Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular

Introducción: Las histonas H1 modulan la estructura y la función de la cromatina. Las células somáticas de mamífero contienen los subtipos H1°, H1a, H1b, H1c, H1d y H1e; en células germinales de testículo y en ovocito, se encuentran respectivamente H1t y H1oo. Su estructura está conformada por un do...

Full description

Autores:
Orrego Cardozo, Mary
Ponte, Inma
Suau, Pedro
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/16047
Acceso en línea:
https://doi.org/10.17151/biosa.2015.14.2.4
https://repositorio.ucaldas.edu.co/handle/ucaldas/16047
Palabra clave:
circular dichroism
histone H1
secondary structure
alpha- helix
beta- structure
DNA
trifluoroethanol
dicroísmo circular
histonas H1
estructura secundaria
hélice- alfa
estructura-beta
ADN
trifluoroetanol
Rights
openAccess
License
Derechos de autor 2015 Biosalud
id RUCALDAS2_a32f94f981c886ce4c1657672f31fe51
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/16047
network_acronym_str RUCALDAS2
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
dc.title.translated.eng.fl_str_mv Characterization of the secondary structure of histone h1 subtypes by circular dichroism (cd)
title Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
spellingShingle Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
circular dichroism
histone H1
secondary structure
alpha- helix
beta- structure
DNA
trifluoroethanol
dicroísmo circular
histonas H1
estructura secundaria
hélice- alfa
estructura-beta
ADN
trifluoroetanol
title_short Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
title_full Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
title_fullStr Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
title_full_unstemmed Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
title_sort Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular
dc.creator.fl_str_mv Orrego Cardozo, Mary
Ponte, Inma
Suau, Pedro
dc.contributor.author.spa.fl_str_mv Orrego Cardozo, Mary
Ponte, Inma
Suau, Pedro
dc.subject.eng.fl_str_mv circular dichroism
histone H1
secondary structure
alpha- helix
beta- structure
DNA
trifluoroethanol
topic circular dichroism
histone H1
secondary structure
alpha- helix
beta- structure
DNA
trifluoroethanol
dicroísmo circular
histonas H1
estructura secundaria
hélice- alfa
estructura-beta
ADN
trifluoroetanol
dc.subject.spa.fl_str_mv dicroísmo circular
histonas H1
estructura secundaria
hélice- alfa
estructura-beta
ADN
trifluoroetanol
description Introducción: Las histonas H1 modulan la estructura y la función de la cromatina. Las células somáticas de mamífero contienen los subtipos H1°, H1a, H1b, H1c, H1d y H1e; en células germinales de testículo y en ovocito, se encuentran respectivamente H1t y H1oo. Su estructura está conformada por un dominio central globular flanqueado por los dominios N-Terminal (DNT) y C-Terminal (DCT). Objetivo: Caracterizar la estructura secundaria de subtipos de la histona H1 mediante dicroísmo circular (DC). Materiales y Métodos: La histona H1 total se extrajo de núcleos de cerebro de rata por cromatografía de intercambio catiónico; la H1° se purificó por filtración en gel y las H1a, H1b, H1c y H1e por cromatografía líquida de alta resolución de fase reversa (RF-HPLC). Los espectros de DC se realizaron en tampón fosfato 10 mM; tampón fosfato 10 mM, 20% TFE (trifluoroetanol); tampón fosfato 10 mM, 40% TFE; tampón fosfato 10 mM, 60% TFE; tampón fosfato 10 mM, 150 mM NaCl y tampón fosfato 10 mM, 1 M NaCl. El análisis de los espectros se realizó con el programa Standard Analysis. Resultados: El porcentaje de hélice-alfa se calculó por diferentes métodos matemáticos teniendo en cuenta elipticidad molar a 193 nm y a 222 nm; con programa de deconvolución K2D y con relaciones cualitativas R1 y R2. El TFE induce la estructura en hélice-alfa en cada uno de los subtipos, mientras que NaCl no induce ningún cambio importante. Conclusión: Los subtipos con mayor contenido de hélice-alfa son H1a y H1c. Las diferencias observadas en el porcentaje de hélice-alfa entre los diferentes subtipos puede ser importante para su diferenciación funcional.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-07-01 00:00:00
2021-02-14T10:01:30Z
dc.date.available.none.fl_str_mv 2015-07-01 00:00:00
2021-02-14T10:01:30Z
dc.date.issued.none.fl_str_mv 2015-07-01
dc.type.spa.fl_str_mv Artículo de revista
Sección Artículos Originales
dc.type.eng.fl_str_mv Journal Article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1657-9550
dc.identifier.uri.none.fl_str_mv https://doi.org/10.17151/biosa.2015.14.2.4
https://repositorio.ucaldas.edu.co/handle/ucaldas/16047
dc.identifier.doi.none.fl_str_mv 10.17151/biosa.2015.14.2.4
dc.identifier.eissn.none.fl_str_mv 2462-960X
identifier_str_mv 1657-9550
10.17151/biosa.2015.14.2.4
2462-960X
url https://doi.org/10.17151/biosa.2015.14.2.4
https://repositorio.ucaldas.edu.co/handle/ucaldas/16047
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.none.fl_str_mv 48
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 29
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.ispartofjournal.spa.fl_str_mv Biosalud
dc.relation.references.spa.fl_str_mv Van Holde K, Zlatanova J. Chromatin higher order structure: chasing a mirage? Journal of Biological Chemistry 1995; 270(15):8373-6.
Wolffe A. Chromatin: structure and function. Academic Press; 1998.
Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and ofthe salt-dependent superstructures of chromatin. The Journal of Cell Biology 1979; 83(2 Pt 1):403-27.
Clark DJ, Thomas JO. Salt-dependent co-operative interaction of histone H1 with linear DNA. Journal of Molecular Biology 1986; 187(4):569-80.
Thomas JO, Rees C, Finch JT. Cooperative binding of the globular domains of histones H1 and H5 to DNA. Nucleic Acids Research 1992; 20(2):187-94.
Cole RD. A minireview of microheterogeneity in H1 histone and its possible significance. Analytical Biochemistry 1984; 136(1):24-30.
Coles LS, Robins AJ, Madley LK, Wells JR. Characterization of the chicken histone H1 gene complement. Generation of a complete set of vertebrate H1 protein sequences. The Journal of Biological Chemistry 1987; 262(20):9656-63.
Smith RC, Dworkin-Rastl E, Dworkin MB. Expression of a histone H1-like protein is restricted to early Xenopus development. Genes & Development 1988; 2(10):1284-95.
Sarg B, López R, Lindner H, Ponte I, Suau P, Roque A. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. Journal of Proteomics 2015; 113:162-77.
Ponte I, Vidal-Taboada JM, Suau P. Evolution of the vertebrate H1 histone class: evidence for the functional differentiation of the subtypes. Molecular Biology and Evolution 1998; 15(6):702-8.
Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biology 2007; 5:22.
Wolffe AP, Khochbin S, Dimitrov S. What do linker histones do in chromatin? Bioessays 1997; 19(3):249-55.
Allan J, Mitchell T, Harborne N, Bohm L, Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. Journal of Molecular Biology 1986; 187(4):591-601.
Clark DJ, Kimura T. Electrostatic mechanism of chromatin folding. Journal of Molecular Biology 1990; 211(4):883-96.
Roque A, Iloro I, Ponte I, Arrondo JL, Suau P. DNA-induced secondary structure of the carboxylterminal domain of histone H1. The Journal of Biological Chemistry 2005; 280(37):32141-7.
Wolffe AP. Histone H1. The International Journal of Biochemistry & Cell Biology 1997; 29(12):1463-6.
Drabent B, Franke K, Bode C, Kosciessa U, Bouterfa H, Hameister H, et al. Isolation of two murine H1 histone genes and chromosomal mapping of the H1 gene complement. Mammalian Genome 1995; 6(8):505-11.
Albig W, Meergans T, Doenecke D. Characterization of the H1.5 gene completes the set of human H1 subtype genes. Gene 1997; 184(2):141-8.
Clark DJ, Hill CS, Martin SR, Thomas JO. Alpha-helix in the carboxy-terminal domains of histones H1 and H5. The EMBO Journal 1988; 7(1):69-75.
Luo P, Baldwin RL. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 1997; 36(27):8413-21.
Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 1993; 362(6417):219-23.
Suzuki M, Gerstein M, Johnson T. An NMR study on the DNA-binding SPKK motif and a model for its interaction with DNA. Protein Engineering 1993; 6(6):565-74.
Vila R, Ponte I, Jiménez MA, Rico M, Suau P. A helix-turn motif in the C-terminal domain of histone H1. Protein Science: a publication of the Protein Society 2000; 9(4):627-36.
Roque A, Ponte I, Suau P. Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1. Biophysical Journal 2007; 93(6):2170-7.
Roque A, Ponte I, Arrondo JL, Suau P. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Research 2008; 36(14):4719- 26.
Roque A, Ponte I, Suau P. Role of charge neutralization in the folding of the carboxy-terminal domain of histone H1. The Journal of Physical Chemistry B 2009; 113(35):12061-6.
Roque A, Teruel N, López R, Ponte I, Suau P. Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain. Journal of Structural Biology 2012; 180(1):101-9.
Nicolini CA (Ed.). Chromatin structure and function. New York: Plenum Press; 1979.
Chen YH, Yang JT, Chau KH. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 1974; 13(16):3350-9.
Viguera AR, Serrano L. Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. Biochemistry 1995; 34(27):8771-9.
Bruch MD, Dhingra MM, Gierasch LM. Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A. Proteins 1991; 10(2):130-9.
Andrade MA, Chacón P, Merelo JJ, Morán F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Engineering 1993; 6(4):383-90.
Khadake JR, Rao MR. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Biochemistry 1997; 36(5):1041-51.
Thompson RJ. Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. Journal of Neurochemistry 1973; 21(1):19-40.
Pina B, Martínez P, Simón L, Suau P. Differential kinetics of histone H1(0) accumulation in neuronal and glial cells from rat cerebral cortex during postnatal development. Biochemical and Biophysical Research Communications 1984; 123(2):697-702.
García-Ramírez M, Leuba SH, Ausio J. One-step fractionation method for isolating H1 histones from chromatin under nondenaturing conditions. Protein Expression and Purification 1990; 1(1):40-4.
Segura JMG, et al. Técnicas instrumentales de análisis en Bioquímica. Síntesis; 2002.
Lennox RW, Cohen LH. Analysis of histone subtypes and their modified forms by polyacrylamide gel electrophoresis. Methods in Enzymology 1989; 170:532-49.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 1989.
Pina B, Martínez P, Suau P. Changes in H1 complement in differentiating rat-brain cortical neurons. European Journal of Biochemistry / FEBS 1987; 164(1):71-6.
Bohm EL, Strickland WN, Strickland M, Thwaits BH, van der Westhuizen DR, von Holt C. Purification of the five main calf thymus histone fractions by gel exclusion chromatography. FEBS Letters 1973; 34(2):217-21.
Brown DT, Alexander BT, Sittman DB. Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Research 1996; 24(3):486-93.
Lennox RW, Oshima RG, Cohen LH. The H1 histones and their interphase phosphorylated states in differentiated and undifferentiated cell lines derived from murine teratocarcinomas. The Journal of Biological Chemistry 1982; 257(9):5183-9.
Scopes RK. Protein purification: principles and practice. Springer; 1994.
Wellman SE, Sittman DB, Chaires JB. Preferential binding of H1e histone to GC-rich DNA. Biochemistry 1994; 33(1):384-8.
Phillips D, Clarke M. Behaviour of histones in exclusion chromatography and gel electrophoresis in relation to their molecular weights. Journal of Chromatography A 1970; 46:320-3.
Gorovsky MA, Pleger GL, Keevert JB, Johmann CA. Studies on histone fraction F2A1 in macro- and micronuclei of Tetrahymena pyriformis. The Journal of Cell Biology 1973; 57(3):773-81.
Lindner H, Helliger W, Puschendorf B. Separation of rat tissue histone H1 subtypes by reverse-phase h.p.l.c. Identification and assignment to a standard H1 nomenclature. The Biochemical Journal 1990; 269(2):359-63.
Lindner H, Sarg B, Helliger W. Application of hydrophilic-interaction liquid chromatography to the separation of phosphorylated H1 histones. Journal of Chromatography A 1997; 782(1):55-62.
Talasz H, Helliger W, Puschendorf B, Lindner H. In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry 1996; 35(6):1761-7.
Khadake JR, Rao MR. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry 1995; 34(48):15792-801.
Pintar A, Chollet A, Bradshaw C, Chaffotte A, Cadieux C, Rooman MJ, et al. Conformational properties of four peptides corresponding to alpha-helical regions of Rhodospirillum cytochrome c2 and bovine calcium binding protein. Biochemistry 1994; 33(37):11158-73.
Prieto J, Serrano L. C-capping and helix stability: the Pro C-capping motif. Journal of Molecular Biology 1997; 274(2):276-88.
Morán F, Montero F, Azorín F, Suau P. Condensation of DNA by the C-terminal domain of histone H1. A circular dichroism study. Biophysical Chemistry 1985; 22(1-2):125-9.
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2015 : Julio - Diciembre
dc.relation.bitstream.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/3784/3495
dc.rights.spa.fl_str_mv Derechos de autor 2015 Biosalud
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2015 Biosalud
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Caldas
dc.source.spa.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/3784
institution Universidad de Caldas
bitstream.url.fl_str_mv https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16047/1/ORE.xml
bitstream.checksum.fl_str_mv 27a5a85b92627a2974016d0bc85aefcd
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad de Caldas
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1800535423575916544
spelling Orrego Cardozo, Mary56ebcc8fd2e870b294261bcd482acf14Ponte, Inmab9753b57385a4c087655ea8a80d60ae7300Suau, Pedro91938928f0ec80b3313b49a7ee2ca7c13002015-07-01 00:00:002021-02-14T10:01:30Z2015-07-01 00:00:002021-02-14T10:01:30Z2015-07-011657-9550https://doi.org/10.17151/biosa.2015.14.2.4https://repositorio.ucaldas.edu.co/handle/ucaldas/1604710.17151/biosa.2015.14.2.42462-960XIntroducción: Las histonas H1 modulan la estructura y la función de la cromatina. Las células somáticas de mamífero contienen los subtipos H1°, H1a, H1b, H1c, H1d y H1e; en células germinales de testículo y en ovocito, se encuentran respectivamente H1t y H1oo. Su estructura está conformada por un dominio central globular flanqueado por los dominios N-Terminal (DNT) y C-Terminal (DCT). Objetivo: Caracterizar la estructura secundaria de subtipos de la histona H1 mediante dicroísmo circular (DC). Materiales y Métodos: La histona H1 total se extrajo de núcleos de cerebro de rata por cromatografía de intercambio catiónico; la H1° se purificó por filtración en gel y las H1a, H1b, H1c y H1e por cromatografía líquida de alta resolución de fase reversa (RF-HPLC). Los espectros de DC se realizaron en tampón fosfato 10 mM; tampón fosfato 10 mM, 20% TFE (trifluoroetanol); tampón fosfato 10 mM, 40% TFE; tampón fosfato 10 mM, 60% TFE; tampón fosfato 10 mM, 150 mM NaCl y tampón fosfato 10 mM, 1 M NaCl. El análisis de los espectros se realizó con el programa Standard Analysis. Resultados: El porcentaje de hélice-alfa se calculó por diferentes métodos matemáticos teniendo en cuenta elipticidad molar a 193 nm y a 222 nm; con programa de deconvolución K2D y con relaciones cualitativas R1 y R2. El TFE induce la estructura en hélice-alfa en cada uno de los subtipos, mientras que NaCl no induce ningún cambio importante. Conclusión: Los subtipos con mayor contenido de hélice-alfa son H1a y H1c. Las diferencias observadas en el porcentaje de hélice-alfa entre los diferentes subtipos puede ser importante para su diferenciación funcional.H1 histones modulate the structure and function of chromatin. Mammalian somatic cells contain H1°, H1a, H1b, H1c, H1d and H1e subtypes; H1t and H1oo are found in testicular germ cells and oocyte, respectively. Its structure consists of a globular core domain flanked by N-terminal (DNT) and C-terminal (DCT) domains. Objective: To characterize the secondary structure of histone H1 subtypes through circular dichroism (CD). Materials and Methods: Total histone H1 was extracted for rat brain nuclei by cation exchange chromatography; histone H1° was purified by gel filtration and the histones H1a, H1b, H1c and H1e were purified by reversed phase high performance liquid chromatography (RP-HPLC). CD spectra were performed in 10 mM phosphate buffer; 10 mM, 20% TFE phosphate buffer (trifluoroethanol); 10 mM, 40% TFE; phosphate buffer 10 mM, 60% TFE; phosphate buffer 10 mM, 150 mM NaCl and phosphate buffer 10 mm, 1 M NaCl. The analysis of the spectra was performed with JASCO Standard Analysis. Results: The percentage of alpha-helix was calculated using different mathematical methods, taking into account the molar ellipticity at 193 nm, and 222 nm, with K2D deconvolution program and the R1 and R2 qualitative relationships. The results indicate that TFE induced the alpha-helix structure in each of the subtypes, whereas NaCl did not induce any significant change. Conclusion: H1a and H1c are subtypes with highest content of alpha-helix. The observed differences in the percentage of alpha-helix between different subtypes may be important for their functional differentiation.application/pdfspaUniversidad de CaldasDerechos de autor 2015 Biosaludhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/3784circular dichroismhistone H1secondary structurealpha- helixbeta- structureDNAtrifluoroethanoldicroísmo circularhistonas H1estructura secundariahélice- alfaestructura-betaADNtrifluoroetanolCaracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circularCharacterization of the secondary structure of histone h1 subtypes by circular dichroism (cd)Artículo de revistaSección Artículos OriginalesJournal Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a854822914BiosaludVan Holde K, Zlatanova J. Chromatin higher order structure: chasing a mirage? Journal of Biological Chemistry 1995; 270(15):8373-6.Wolffe A. Chromatin: structure and function. Academic Press; 1998.Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and ofthe salt-dependent superstructures of chromatin. The Journal of Cell Biology 1979; 83(2 Pt 1):403-27.Clark DJ, Thomas JO. Salt-dependent co-operative interaction of histone H1 with linear DNA. Journal of Molecular Biology 1986; 187(4):569-80.Thomas JO, Rees C, Finch JT. Cooperative binding of the globular domains of histones H1 and H5 to DNA. Nucleic Acids Research 1992; 20(2):187-94.Cole RD. A minireview of microheterogeneity in H1 histone and its possible significance. Analytical Biochemistry 1984; 136(1):24-30.Coles LS, Robins AJ, Madley LK, Wells JR. Characterization of the chicken histone H1 gene complement. Generation of a complete set of vertebrate H1 protein sequences. The Journal of Biological Chemistry 1987; 262(20):9656-63.Smith RC, Dworkin-Rastl E, Dworkin MB. Expression of a histone H1-like protein is restricted to early Xenopus development. Genes & Development 1988; 2(10):1284-95.Sarg B, López R, Lindner H, Ponte I, Suau P, Roque A. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. Journal of Proteomics 2015; 113:162-77.Ponte I, Vidal-Taboada JM, Suau P. Evolution of the vertebrate H1 histone class: evidence for the functional differentiation of the subtypes. Molecular Biology and Evolution 1998; 15(6):702-8.Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biology 2007; 5:22.Wolffe AP, Khochbin S, Dimitrov S. What do linker histones do in chromatin? Bioessays 1997; 19(3):249-55.Allan J, Mitchell T, Harborne N, Bohm L, Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. Journal of Molecular Biology 1986; 187(4):591-601.Clark DJ, Kimura T. Electrostatic mechanism of chromatin folding. Journal of Molecular Biology 1990; 211(4):883-96.Roque A, Iloro I, Ponte I, Arrondo JL, Suau P. DNA-induced secondary structure of the carboxylterminal domain of histone H1. The Journal of Biological Chemistry 2005; 280(37):32141-7.Wolffe AP. Histone H1. The International Journal of Biochemistry & Cell Biology 1997; 29(12):1463-6.Drabent B, Franke K, Bode C, Kosciessa U, Bouterfa H, Hameister H, et al. Isolation of two murine H1 histone genes and chromosomal mapping of the H1 gene complement. Mammalian Genome 1995; 6(8):505-11.Albig W, Meergans T, Doenecke D. Characterization of the H1.5 gene completes the set of human H1 subtype genes. Gene 1997; 184(2):141-8.Clark DJ, Hill CS, Martin SR, Thomas JO. Alpha-helix in the carboxy-terminal domains of histones H1 and H5. The EMBO Journal 1988; 7(1):69-75.Luo P, Baldwin RL. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 1997; 36(27):8413-21.Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 1993; 362(6417):219-23.Suzuki M, Gerstein M, Johnson T. An NMR study on the DNA-binding SPKK motif and a model for its interaction with DNA. Protein Engineering 1993; 6(6):565-74.Vila R, Ponte I, Jiménez MA, Rico M, Suau P. A helix-turn motif in the C-terminal domain of histone H1. Protein Science: a publication of the Protein Society 2000; 9(4):627-36.Roque A, Ponte I, Suau P. Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1. Biophysical Journal 2007; 93(6):2170-7.Roque A, Ponte I, Arrondo JL, Suau P. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Research 2008; 36(14):4719- 26.Roque A, Ponte I, Suau P. Role of charge neutralization in the folding of the carboxy-terminal domain of histone H1. The Journal of Physical Chemistry B 2009; 113(35):12061-6.Roque A, Teruel N, López R, Ponte I, Suau P. Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain. Journal of Structural Biology 2012; 180(1):101-9.Nicolini CA (Ed.). Chromatin structure and function. New York: Plenum Press; 1979.Chen YH, Yang JT, Chau KH. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 1974; 13(16):3350-9.Viguera AR, Serrano L. Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. Biochemistry 1995; 34(27):8771-9.Bruch MD, Dhingra MM, Gierasch LM. Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A. Proteins 1991; 10(2):130-9.Andrade MA, Chacón P, Merelo JJ, Morán F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Engineering 1993; 6(4):383-90.Khadake JR, Rao MR. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Biochemistry 1997; 36(5):1041-51.Thompson RJ. Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. Journal of Neurochemistry 1973; 21(1):19-40.Pina B, Martínez P, Simón L, Suau P. Differential kinetics of histone H1(0) accumulation in neuronal and glial cells from rat cerebral cortex during postnatal development. Biochemical and Biophysical Research Communications 1984; 123(2):697-702.García-Ramírez M, Leuba SH, Ausio J. One-step fractionation method for isolating H1 histones from chromatin under nondenaturing conditions. Protein Expression and Purification 1990; 1(1):40-4.Segura JMG, et al. Técnicas instrumentales de análisis en Bioquímica. Síntesis; 2002.Lennox RW, Cohen LH. Analysis of histone subtypes and their modified forms by polyacrylamide gel electrophoresis. Methods in Enzymology 1989; 170:532-49.Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 1989.Pina B, Martínez P, Suau P. Changes in H1 complement in differentiating rat-brain cortical neurons. European Journal of Biochemistry / FEBS 1987; 164(1):71-6.Bohm EL, Strickland WN, Strickland M, Thwaits BH, van der Westhuizen DR, von Holt C. Purification of the five main calf thymus histone fractions by gel exclusion chromatography. FEBS Letters 1973; 34(2):217-21.Brown DT, Alexander BT, Sittman DB. Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Research 1996; 24(3):486-93.Lennox RW, Oshima RG, Cohen LH. The H1 histones and their interphase phosphorylated states in differentiated and undifferentiated cell lines derived from murine teratocarcinomas. The Journal of Biological Chemistry 1982; 257(9):5183-9.Scopes RK. Protein purification: principles and practice. Springer; 1994.Wellman SE, Sittman DB, Chaires JB. Preferential binding of H1e histone to GC-rich DNA. Biochemistry 1994; 33(1):384-8.Phillips D, Clarke M. Behaviour of histones in exclusion chromatography and gel electrophoresis in relation to their molecular weights. Journal of Chromatography A 1970; 46:320-3.Gorovsky MA, Pleger GL, Keevert JB, Johmann CA. Studies on histone fraction F2A1 in macro- and micronuclei of Tetrahymena pyriformis. The Journal of Cell Biology 1973; 57(3):773-81.Lindner H, Helliger W, Puschendorf B. Separation of rat tissue histone H1 subtypes by reverse-phase h.p.l.c. Identification and assignment to a standard H1 nomenclature. The Biochemical Journal 1990; 269(2):359-63.Lindner H, Sarg B, Helliger W. Application of hydrophilic-interaction liquid chromatography to the separation of phosphorylated H1 histones. Journal of Chromatography A 1997; 782(1):55-62.Talasz H, Helliger W, Puschendorf B, Lindner H. In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry 1996; 35(6):1761-7.Khadake JR, Rao MR. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry 1995; 34(48):15792-801.Pintar A, Chollet A, Bradshaw C, Chaffotte A, Cadieux C, Rooman MJ, et al. Conformational properties of four peptides corresponding to alpha-helical regions of Rhodospirillum cytochrome c2 and bovine calcium binding protein. Biochemistry 1994; 33(37):11158-73.Prieto J, Serrano L. C-capping and helix stability: the Pro C-capping motif. Journal of Molecular Biology 1997; 274(2):276-88.Morán F, Montero F, Azorín F, Suau P. Condensation of DNA by the C-terminal domain of histone H1. A circular dichroism study. Biophysical Chemistry 1985; 22(1-2):125-9.Núm. 2 , Año 2015 : Julio - Diciembrehttps://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/3784/3495OREORE.xmltext/xml2609https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16047/1/ORE.xml27a5a85b92627a2974016d0bc85aefcdMD51ucaldas/16047oai:repositorio.ucaldas.edu.co:ucaldas/160472021-02-14 10:01:30.267Repositorio Digital de la Universidad de Caldasbdigital@metabiblioteca.com