Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica.
Introducción. Este trabajo de investigación se realizó en la Ciudad de Honda, Colombia.  Identificó el efecto de la sombra de los árboles en la atenuación de la temperatura, humedad relativa, temperatura de superficie del suelo, radiación solar y ultravioleta (...
- Autores:
-
Devia, Carlos
Torres, Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/14924
- Acceso en línea:
- https://doi.org/10.17151/luaz.2019.49.12
- Palabra clave:
- ecosystem services
urban woodland
water demand
arbolado urbano
ciudad
ecología urbana
servicios ecosistémicos
- Rights
- openAccess
- License
- Derechos de autor Carlos Devia
id |
RUCALDAS2_724a46c2029aa2d2bc9d2e9b09eb72fd |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/14924 |
network_acronym_str |
RUCALDAS2 |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. |
dc.title.translated.eng.fl_str_mv |
Attenuation of temperature and UV radiation of vegetation in urban environments of riverside cities and their water demand. |
title |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. |
spellingShingle |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. ecosystem services urban woodland water demand arbolado urbano ciudad ecología urbana servicios ecosistémicos |
title_short |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. |
title_full |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. |
title_fullStr |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. |
title_full_unstemmed |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. |
title_sort |
Atenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica. |
dc.creator.fl_str_mv |
Devia, Carlos Torres, Andrés |
dc.contributor.author.spa.fl_str_mv |
Devia, Carlos Torres, Andrés |
dc.subject.eng.fl_str_mv |
ecosystem services urban woodland water demand |
topic |
ecosystem services urban woodland water demand arbolado urbano ciudad ecología urbana servicios ecosistémicos |
dc.subject.spa.fl_str_mv |
arbolado urbano ciudad ecología urbana servicios ecosistémicos |
description |
Introducción. Este trabajo de investigación se realizó en la Ciudad de Honda, Colombia.  Identificó el efecto de la sombra de los árboles en la atenuación de la temperatura, humedad relativa, temperatura de superficie del suelo, radiación solar y ultravioleta (UV) y determinó requerimientos de agua para la vegetación arbórea. Metodología. Se tomaron datos de temperatura del aire y de superficie de suelo, humedad relativa del aire, radiaciones solares y UV bajo la sombra de árboles y a plena exposición. Resultados. Se encontró que la temperatura del aire osciló entre 50ºC a plena exposición solar y 41ºC bajo sombra. La temperatura de  superficie presentó a plena exposición solar valores de 66.8ºC y 42.6ºC bajo sombra. La variación de la radiación solar registrada ofreció un valor de 17.13 mW/cm2 a plena exposición solar y 1.69 mW/cm2 bajo sombra. La radiación UV presentó valores de 8 a plena exposición solar y 5 bajo sombra. La demanda hídrica por planta/día varió entre 5 y más de 500 litros, siendo la demanda diaria cercana a 2500 m3 . Conclusiones. En la ciudad no se realiza riego a los árboles, lo que conduce a que se produzca un déficit hídrico evidenciado por la pérdida de follaje ocasionando mínimas atenuaciones a la radiación UV. Las especies más relevantes respecto a la sombra son almendro (Terminalia cattapa), Pallandé (Pitecellobium dulce), naranjuelo (Capparis odoratissima), guayacán carrapo (Bulnesia carrapo), chirlobirlo (Tecoma stands), cumulá (Aspidosperma polyneuron) y mango (Manguifera indica). Los árboles pueden generar un buen servicio ecosistémico por la sombra, este servicio está mediado por la selección de la especie y el manejo de que son objeto los árboles. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-07-01 00:00:00 |
dc.date.available.none.fl_str_mv |
2020-07-01 00:00:00 |
dc.date.issued.none.fl_str_mv |
2020-07-01 |
dc.type.spa.fl_str_mv |
Artículo de revista Sección Investigación original |
dc.type.eng.fl_str_mv |
Journal Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://doi.org/10.17151/luaz.2019.49.12 |
dc.identifier.doi.none.fl_str_mv |
10.17151/luaz.2019.49.12 |
dc.identifier.eissn.none.fl_str_mv |
1909-2474 |
url |
https://doi.org/10.17151/luaz.2019.49.12 |
identifier_str_mv |
10.17151/luaz.2019.49.12 1909-2474 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.none.fl_str_mv |
219 |
dc.relation.citationissue.spa.fl_str_mv |
49 |
dc.relation.citationstartpage.none.fl_str_mv |
200 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Luna Azul (On Line) |
dc.relation.references.spa.fl_str_mv |
Akbari, H., Pomerantz, M. y Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70 (3), 295–310. Alavipanah, S., Wegmann, M., Qureshi, S., Weng, Q. y Koellner, T. (2015). The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability (Switzerland), 7(4), 4689-4706. Andersson, E., Barthel, S. y Ahrné, K. (2007). Measuring Social-Ecological Dynamics Behind the Generation of Ecosystem Services. Ecologic Applications, 17, 1267-1278. Asadian, Y. & Weiler M. (2009). A New Approach in Measuring Rainfall Interception by Urban Trees in Coastal British Columbia. Water Qual. Res. J. Can., 44 (1), 16-25. Barcello-Coll, J. G., Rodrigo, B., Sabater. & Sánchez, R. (1987). Fisiología Vegetal. Madrid, España: Ediciones Pirámides S. A. Brezonik, P.L. y Stadelmann, T.H. (2002). Analysis and predictive models of storm wáter runoff volumes, load, and pollutant concentrations from watersheds in the Twin cities Metropolitan area, Minnesota, USA. Water Res., 36 (7), 1743–1757. Burden, D. (2006). Urban Street Trees. 22 Benefits Specific Applications. Recovered from http://www.walkable.org/download/22_benefits.pdf. Calaza, P. e Iglesias, M. (2012). Evaluación de riesgo de arbolado peligroso. Principios, indicadores y métodos. Madrid, España: Editoria Asoc. Española de Arboricultura. Cancer Council New South Wales. (2008). The Shade Handbook. Recovered from https://www.centresupport.com.au/wp-content/uploads/2012/10/Shade-handbook.pdf. Crackford, R.H. & Richarson, D. P. (2000). Partitioning of rainfall into throughfall, stemflow and interceptin: effect of forest type, ground cover and climate. Hydrological Processes, 14(16-17), 2903-2920. De Groot, R. S., Wilson, M. & Roelof, M.J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41, 393–408. Devia, C. y Torres, A. (2012). Thermic Attenuation on Concrete Sidewalk under Urban Trees. Case Study: Santa Marta–Colombia. SEEFOR (South-East European Forestry), 3(2), 79-85. Dwyer, J., McPherson, E., Schroeder, H. y Rowntree, R. (1992). Assessing The Benefits And Costs of the Urban Forest. Journal of Arboriculture, 18 (5). Dudgeon, D., Arthington, A., Gessner, M., Kawabata, Z., Knowler, D., Lévêque, C. y Sullivan, C. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182. doi:10.1017/S1464793105006950. Doorenbos, J. y Pruitt, W. O. (1977). Guidelines for predicting crop water requirements. Rome, Italy: FAO. EPA. (2008). Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics. Recovered from http:// www.epa.gov/hiri/resources/compendium.htm. Escobedo, J., Francisco, T. y Wagner, J. E. (2011). Urban forest and pollution mitigation: Analyzing ecosystem service and disservices. Recovered from https://www.ncbi.nlm.nih.gov/pubmed/21316130. FISRWG. (2005). Stream corridor restoration. Principles, processes and practices. EEUU: The Federal Interagency Stream Restoration Working Group. Geis, P., Lawry, D., Gardner, J., Hook, T., Cockerrell, S. & Henderson, S. (2007). Assessment of the uvr protection provide by different tree species. Photochemistry and Photobiology, 83(6), 1465-1470. Grant, R.H., Heisler, G.M. y Goa, W. (2002). Estimation of pedestrian level UV exposure under trees. Photochemistry and Photobiology, 75(4), 369–376. Heisler, G. M. y Grant, R. H. (2002). Ultraviolet radiation in urban ecosystems with consideration of effects on human health. Urban Ecosyst, 4 (3), 193-229. Konijnendijk, C., Nilsson, K., Randrup, T.B. y Schipperijn, J. (2005). Benefits and uses of urban forests and trees. In C. C. Konijnendijk., K. Nilsson., T. B. Randrup. y J. Schipperjin. (Eds.), Urban Forests and Trees. (pp. 81-114). Berlin: Springer–Verlag. Lin, H., Chen, Y., Zhang, H., Fu, P. y Fan, Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, British Ecological Society, 31(12), 2202-2211. McGranahan, P., Marcotullio, X., Bai, T., Braga, I., Douglar, T., Elmqvist, W., Rees, D…,. Zlotnik. (2005). Urban Systems. Millennium Ecosystem Assessment. In Ecosystems and Human Well-being: Current State and Trends (pp. 795-825). Washington: Island Pressm. McPherson, E. (2003). A benefit-cost analysis of ten street tree species in Modesto, California, U.S. Journal of Arboriculture, 29(1), 1-8. Nowak, D., Crane, D., Stevens, J. e Ibarra, M. (2000). Brooklyn’s urban forest. Recovered from https://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/2002/gtrne290.pdf Nowak, D.J., Hoehn, R.E.I.I.I., Crane, D.E., Stevens, J.C. y Walton, J.T. (2007). Assessing urban forest effects and values: Philadelphia's urban forest. Recovered from https://www.fs.usda.gov/treesearch/pubs/19659. Oke, T. R. (1978). Boundary layer climates. London: William Clowes and Sons. Oke,T. R. (1989). The micrometeorology of the urban forest. Philos T Roy Soc B, 324 (1223), 335-349. Oke, T. R. (1995). «The heat island of the urban boundary layer: characteristics, causes and effects». In J. E. Cermak. (Ed), Wind Climate in Cities (22-45 Londres). Kluwer-Academic Publ. Norwell. Pallardy, S. G. (2007). Physiology of woody plants. California: Academic Press. Peper, P. J., McPherson, E., Simpson, J. R., Vargas, K. E. y Xiao, Q. (2009). Lower Midwest community tree guide: benefits, costs and strategic planting. Gen. Tech. Rep. PSW-GTR-219. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. Prats, J., Vicente-Serrano, S. y Sánchez, M. (2005). Los efectos de la Urbanización de Zaragoza (España) 2005. La Isla de calor y sus factores condicionantes. Boletín de la A.G.E., 40, 311 – 327. Randrup, T.B., Konijnendijk, C.C., Dobbertin, M. K. y Prüller, R. (2005). The concept of urban forestry in Europe. In C. C. Konijnendijk., K. Nilsson., T. B. Randrup. y J. Schip-Perijn. (Eds.), Urban Forests and Trees: A Reference Book (pp. 9-21). Berlin: Springer. Salisbury, F. & Ross, C. (1994). Fisiología Vegetal. Ciudad de México, México: Editorial Iberoamericana. Santamouris, M., Haddad, S., Fiorito, F., Osmond, P., Ding, L., Prasad, D., Wang, R. (2017). Urban Heat Island and Overheating Characteristics in Sydney, Australia. An Analysis of Multiyear Measurements. Sustainability, 9(12), 712. Urban Horticulture Institute. (2003). Recommended urban trees: site assessment and tree selection for stress tolerance. Recovered from http://www.hort.cornell.edu/UHI/out-%20reach/recurbtree/index.html Vieira De Abreu-Harbich, L., Labaki, L. C., Matzarakis, A., Abreu-harbich, L. V., De, Labaki, L.C. y Matzarakis, A. (2012). Different Trees and configuration as microclimate control strategy in Tropics. ICUC8 – 8th International Conference on Urban Climates, Dublin Ireland. Vieira De Abreu-Harbich, L., Labaki, L.C. y Matzarakis, A. (2015). Effect of tree planting design and tree species on human thermal comfort in the tropics. Landscape and Urban Planning, 138, 99-109. Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1 (6), pp. 80-83. Zhao, X., Li, G. y Gao, T. (2017). Research on Optimization and Biological Characteristics of Harbin Trees Based on Thermal Comfort in Summer. Procedia Engineering, 180, 550-561. |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 49 , Año 2019 : Julio - Diciembre |
dc.relation.bitstream.none.fl_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/2331/2233 |
dc.rights.spa.fl_str_mv |
Derechos de autor Carlos Devia |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos de autor Carlos Devia https://creativecommons.org/licenses/by-nc-sa/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Caldas |
dc.source.spa.fl_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/2331 |
institution |
Universidad de Caldas |
bitstream.url.fl_str_mv |
https://repositorio.ucaldas.edu.co/bitstream/ucaldas/14924/1/ORE.xml |
bitstream.checksum.fl_str_mv |
64286f86d4256e966a988a2c3b185106 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Digital de la Universidad de Caldas |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1800536341650341888 |
spelling |
Devia, Carlos5a978f4dbcd1e03f9cbf29eccc047e2f500Torres, Andrés62cf594accbd8ae8223b49575a0e4fe75002020-07-01 00:00:002020-07-01 00:00:002020-07-01https://doi.org/10.17151/luaz.2019.49.1210.17151/luaz.2019.49.121909-2474Introducción. Este trabajo de investigación se realizó en la Ciudad de Honda, Colombia.  Identificó el efecto de la sombra de los árboles en la atenuación de la temperatura, humedad relativa, temperatura de superficie del suelo, radiación solar y ultravioleta (UV) y determinó requerimientos de agua para la vegetación arbórea. Metodología. Se tomaron datos de temperatura del aire y de superficie de suelo, humedad relativa del aire, radiaciones solares y UV bajo la sombra de árboles y a plena exposición. Resultados. Se encontró que la temperatura del aire osciló entre 50ºC a plena exposición solar y 41ºC bajo sombra. La temperatura de  superficie presentó a plena exposición solar valores de 66.8ºC y 42.6ºC bajo sombra. La variación de la radiación solar registrada ofreció un valor de 17.13 mW/cm2 a plena exposición solar y 1.69 mW/cm2 bajo sombra. La radiación UV presentó valores de 8 a plena exposición solar y 5 bajo sombra. La demanda hídrica por planta/día varió entre 5 y más de 500 litros, siendo la demanda diaria cercana a 2500 m3 . Conclusiones. En la ciudad no se realiza riego a los árboles, lo que conduce a que se produzca un déficit hídrico evidenciado por la pérdida de follaje ocasionando mínimas atenuaciones a la radiación UV. Las especies más relevantes respecto a la sombra son almendro (Terminalia cattapa), Pallandé (Pitecellobium dulce), naranjuelo (Capparis odoratissima), guayacán carrapo (Bulnesia carrapo), chirlobirlo (Tecoma stands), cumulá (Aspidosperma polyneuron) y mango (Manguifera indica). Los árboles pueden generar un buen servicio ecosistémico por la sombra, este servicio está mediado por la selección de la especie y el manejo de que son objeto los árboles.Introduction: This research work was carried out in the city of Honda, Colombia.  It identified the effect of tree shade on temperature attenuation, relative humidity, soil surface temperature, solar and ultraviolet (UV) radiation, and determined water requirements for arboreal vegetation. Methodology: Data on air and soil surface temperature, relative air humidity, solar and UV radiation were taken under the shade of trees and at full exposure. Results: It was found that the air temperature ranged from 50ºC at full sun exposure to 41ºC under shade. The surface temperature was 66.8ºC and 42.6ºC under shade. The variation of the registered solar radiation offered a value of 17.13 mW/cm2 at full solar exposure and 1.69 mW/cm2 under shade. The UV radiation presented values of 8 at full solar exposure and 5 under shade. The water demand per plant/day varied between 5 and more than 500 liters, being the daily demand close to 2500 m3. Conclusions: There is no irrigation of trees in the city which leads to a water deficit evidenced by the loss of foliage causing minimal attenuations to UV radiation. The most relevant species regarding shade are almond (Terminalia cattapa), Pallandé (Pitecellobium dulce), orange (Capparis odoratissima), guayacán carrapo (Bulnesia carrapo), chirlobirlo (Tecoma stands), cumula (Aspidosperma polyneuron) and mango (Manguifera indica). Trees can generate a good ecosystem service by shade which is mediated by the selection of the species and the management of the trees.application/pdfspaUniversidad de CaldasDerechos de autor Carlos Deviahttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.http://purl.org/coar/access_right/c_abf2https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/2331ecosystem servicesurban woodlandwater demandarbolado urbanociudadecología urbanaservicios ecosistémicosAtenuación de la temperatura y radiación UV de la vegetación en entornos urbanos de ciudades ribereñas y su demanda hídrica.Attenuation of temperature and UV radiation of vegetation in urban environments of riverside cities and their water demand.Artículo de revistaSección Investigación originalJournal Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8521949200Revista Luna Azul (On Line)Akbari, H., Pomerantz, M. y Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70 (3), 295–310.Alavipanah, S., Wegmann, M., Qureshi, S., Weng, Q. y Koellner, T. (2015). The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability (Switzerland), 7(4), 4689-4706.Andersson, E., Barthel, S. y Ahrné, K. (2007). Measuring Social-Ecological Dynamics Behind the Generation of Ecosystem Services. Ecologic Applications, 17, 1267-1278.Asadian, Y. & Weiler M. (2009). A New Approach in Measuring Rainfall Interception by Urban Trees in Coastal British Columbia. Water Qual. Res. J. Can., 44 (1), 16-25.Barcello-Coll, J. G., Rodrigo, B., Sabater. & Sánchez, R. (1987). Fisiología Vegetal. Madrid, España: Ediciones Pirámides S. A.Brezonik, P.L. y Stadelmann, T.H. (2002). Analysis and predictive models of storm wáter runoff volumes, load, and pollutant concentrations from watersheds in the Twin cities Metropolitan area, Minnesota, USA. Water Res., 36 (7), 1743–1757.Burden, D. (2006). Urban Street Trees. 22 Benefits Specific Applications. Recovered from http://www.walkable.org/download/22_benefits.pdf.Calaza, P. e Iglesias, M. (2012). Evaluación de riesgo de arbolado peligroso. Principios, indicadores y métodos. Madrid, España: Editoria Asoc. Española de Arboricultura.Cancer Council New South Wales. (2008). The Shade Handbook. Recovered from https://www.centresupport.com.au/wp-content/uploads/2012/10/Shade-handbook.pdf.Crackford, R.H. & Richarson, D. P. (2000). Partitioning of rainfall into throughfall, stemflow and interceptin: effect of forest type, ground cover and climate. Hydrological Processes, 14(16-17), 2903-2920.De Groot, R. S., Wilson, M. & Roelof, M.J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41, 393–408.Devia, C. y Torres, A. (2012). Thermic Attenuation on Concrete Sidewalk under Urban Trees. Case Study: Santa Marta–Colombia. SEEFOR (South-East European Forestry), 3(2), 79-85.Dwyer, J., McPherson, E., Schroeder, H. y Rowntree, R. (1992). Assessing The Benefits And Costs of the Urban Forest. Journal of Arboriculture, 18 (5).Dudgeon, D., Arthington, A., Gessner, M., Kawabata, Z., Knowler, D., Lévêque, C. y Sullivan, C. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182. doi:10.1017/S1464793105006950.Doorenbos, J. y Pruitt, W. O. (1977). Guidelines for predicting crop water requirements. Rome, Italy: FAO.EPA. (2008). Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics. Recovered from http:// www.epa.gov/hiri/resources/compendium.htm.Escobedo, J., Francisco, T. y Wagner, J. E. (2011). Urban forest and pollution mitigation: Analyzing ecosystem service and disservices. Recovered from https://www.ncbi.nlm.nih.gov/pubmed/21316130.FISRWG. (2005). Stream corridor restoration. Principles, processes and practices. EEUU: The Federal Interagency Stream Restoration Working Group.Geis, P., Lawry, D., Gardner, J., Hook, T., Cockerrell, S. & Henderson, S. (2007). Assessment of the uvr protection provide by different tree species. Photochemistry and Photobiology, 83(6), 1465-1470.Grant, R.H., Heisler, G.M. y Goa, W. (2002). Estimation of pedestrian level UV exposure under trees. Photochemistry and Photobiology, 75(4), 369–376.Heisler, G. M. y Grant, R. H. (2002). Ultraviolet radiation in urban ecosystems with consideration of effects on human health. Urban Ecosyst, 4 (3), 193-229.Konijnendijk, C., Nilsson, K., Randrup, T.B. y Schipperijn, J. (2005). Benefits and uses of urban forests and trees. In C. C. Konijnendijk., K. Nilsson., T. B. Randrup. y J. Schipperjin. (Eds.), Urban Forests and Trees. (pp. 81-114). Berlin: Springer–Verlag.Lin, H., Chen, Y., Zhang, H., Fu, P. y Fan, Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, British Ecological Society, 31(12), 2202-2211.McGranahan, P., Marcotullio, X., Bai, T., Braga, I., Douglar, T., Elmqvist, W., Rees, D…,. Zlotnik. (2005). Urban Systems. Millennium Ecosystem Assessment. In Ecosystems and Human Well-being: Current State and Trends (pp. 795-825). Washington: Island Pressm.McPherson, E. (2003). A benefit-cost analysis of ten street tree species in Modesto, California, U.S. Journal of Arboriculture, 29(1), 1-8.Nowak, D., Crane, D., Stevens, J. e Ibarra, M. (2000). Brooklyn’s urban forest. Recovered from https://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/2002/gtrne290.pdfNowak, D.J., Hoehn, R.E.I.I.I., Crane, D.E., Stevens, J.C. y Walton, J.T. (2007). Assessing urban forest effects and values: Philadelphia's urban forest. Recovered from https://www.fs.usda.gov/treesearch/pubs/19659.Oke, T. R. (1978). Boundary layer climates. London: William Clowes and Sons.Oke,T. R. (1989). The micrometeorology of the urban forest. Philos T Roy Soc B, 324 (1223), 335-349.Oke, T. R. (1995). «The heat island of the urban boundary layer: characteristics, causes and effects». In J. E. Cermak. (Ed), Wind Climate in Cities (22-45 Londres). Kluwer-Academic Publ. Norwell.Pallardy, S. G. (2007). Physiology of woody plants. California: Academic Press.Peper, P. J., McPherson, E., Simpson, J. R., Vargas, K. E. y Xiao, Q. (2009). Lower Midwest community tree guide: benefits, costs and strategic planting. Gen. Tech. Rep. PSW-GTR-219. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.Prats, J., Vicente-Serrano, S. y Sánchez, M. (2005). Los efectos de la Urbanización de Zaragoza (España) 2005. La Isla de calor y sus factores condicionantes. Boletín de la A.G.E., 40, 311 – 327.Randrup, T.B., Konijnendijk, C.C., Dobbertin, M. K. y Prüller, R. (2005). The concept of urban forestry in Europe. In C. C. Konijnendijk., K. Nilsson., T. B. Randrup. y J. Schip-Perijn. (Eds.), Urban Forests and Trees: A Reference Book (pp. 9-21). Berlin: Springer.Salisbury, F. & Ross, C. (1994). Fisiología Vegetal. Ciudad de México, México: Editorial Iberoamericana.Santamouris, M., Haddad, S., Fiorito, F., Osmond, P., Ding, L., Prasad, D., Wang, R. (2017). Urban Heat Island and Overheating Characteristics in Sydney, Australia. An Analysis of Multiyear Measurements. Sustainability, 9(12), 712.Urban Horticulture Institute. (2003). Recommended urban trees: site assessment and tree selection for stress tolerance. Recovered from http://www.hort.cornell.edu/UHI/out-%20reach/recurbtree/index.htmlVieira De Abreu-Harbich, L., Labaki, L. C., Matzarakis, A., Abreu-harbich, L. V., De, Labaki, L.C. y Matzarakis, A. (2012). Different Trees and configuration as microclimate control strategy in Tropics. ICUC8 – 8th International Conference on Urban Climates, Dublin Ireland.Vieira De Abreu-Harbich, L., Labaki, L.C. y Matzarakis, A. (2015). Effect of tree planting design and tree species on human thermal comfort in the tropics. Landscape and Urban Planning, 138, 99-109.Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1 (6), pp. 80-83.Zhao, X., Li, G. y Gao, T. (2017). Research on Optimization and Biological Characteristics of Harbin Trees Based on Thermal Comfort in Summer. Procedia Engineering, 180, 550-561.Núm. 49 , Año 2019 : Julio - Diciembrehttps://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/2331/2233OREORE.xmltext/xml2687https://repositorio.ucaldas.edu.co/bitstream/ucaldas/14924/1/ORE.xml64286f86d4256e966a988a2c3b185106MD51ucaldas/14924oai:repositorio.ucaldas.edu.co:ucaldas/149242021-03-07 10:21:15.879Repositorio Digital de la Universidad de Caldasbdigital@metabiblioteca.com |