Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución.
Ilustraciones, gráficas, mapas
- Autores:
-
Quiceno Colorado, July
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/16723
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/16723
https://repositorio.ucaldas.edu.co/
- Palabra clave:
- Análisis químico
Geomorfología
Rocas
Vulcanología
Magmatismo
Zonación
Geotermobarometría
Cerro El Morro
Cerro Florencia
Samaná
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
RUCALDAS2_6520b1332fa854ade2b5c5d4fb79cac9 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/16723 |
network_acronym_str |
RUCALDAS2 |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. |
title |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. |
spellingShingle |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. Análisis químico Geomorfología Rocas Vulcanología Magmatismo Zonación Geotermobarometría Cerro El Morro Cerro Florencia Samaná |
title_short |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. |
title_full |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. |
title_fullStr |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. |
title_full_unstemmed |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. |
title_sort |
Características composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución. |
dc.creator.fl_str_mv |
Quiceno Colorado, July |
dc.contributor.advisor.none.fl_str_mv |
Ruiz Jiménez, Elvira Cristina |
dc.contributor.author.none.fl_str_mv |
Quiceno Colorado, July |
dc.subject.lemb.none.fl_str_mv |
Análisis químico Geomorfología Rocas Vulcanología |
topic |
Análisis químico Geomorfología Rocas Vulcanología Magmatismo Zonación Geotermobarometría Cerro El Morro Cerro Florencia Samaná |
dc.subject.proposal.spa.fl_str_mv |
Magmatismo Zonación Geotermobarometría Cerro El Morro Cerro Florencia Samaná |
description |
Ilustraciones, gráficas, mapas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-10T17:10:51Z |
dc.date.available.none.fl_str_mv |
2021-06-10T17:10:51Z |
dc.date.issued.none.fl_str_mv |
2021-06-09 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/16723 |
dc.identifier.instname.spa.fl_str_mv |
Universidad de Caldas |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad de Caldas |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.ucaldas.edu.co/ |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/16723 https://repositorio.ucaldas.edu.co/ |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas |
dc.language.iso.spa.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.references.spa.fl_str_mv |
Barbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & PardoTrujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348, 105185. https://doi.org/10.1016/j.lithos.2019.105185 Barbosa-González, S. (2018). Análisis petrográfico comparativo entre dos cuerpos ígneos de Samaná (Caldas), a través de la caracterización textural y cuantitativa “CSD”. Tesis de pregrado. Universidad de Caldas. Best, M. G. & Christiansen, E. H. (2001). Igneous petrology. Oxford: Blackwell Science. Bissig, T., Leal-Mejía, H., Stevens, R. & Hart, C. (2017). High Sr/Y Magma Petrogenesis and the Link to Porphyry Mineralization as Revealed by Garnet-Bearing I-Type Granodiorite Porphyries of the Middle Cauca Au-Cu Belt, Colombia. Economic Geology, 112 (3), 551–568. https://doi.org/10.2113/econgeo.112.3.551. Blanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J. & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56 (15), 1852–1872. https://doi.org/10.1080/00206814.2014.963710 Borrero, C., Murcia, H., Agustín-Flores, J., Arboleda, M. T. & Giraldo, A. M. (2017). Pyroclastic deposits of San Diego maar, central Colombia: an example of a silicic magma-related monogenetic eruption in a hard substrate. Geological Society, London, Special Publications, 446, 361-374. https://doi.org/10.1144/SP446.10. Brown, M.A., Brown, M., Carlson, W.D., and Denison, C. (1999). Topology of syntectonic melt-flow networks in the deep crust; inferences from three-dimensional images of leucosome geometry in migmatites, American Mineralogist. 84, 1793-1818 Castillo, P.R. (2006). An overview of adakite petrogenesis. Chinese Science Bulletin. 51, 257-268. https://doi.org/10.1007/s11434-006-0257-7. Castro–Dorado. A. (2015) petrografía de rocas ígneas y metamórficas. Ediciones Paraninfo, SA. 1era edición, 2015. España. Chiaradia, M. (2009). Adakite-like magmas from fractional crystallization and melting assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology, 265(3-4), 468- 487.https://doi.org/10.1016/j.chemgeo.2009.05.014 Class, C., Miller, D. M., Goldstein, S. L. & Langmuir C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry Geophysics Geosystems, 1 (1), 1-28. https://doi.org/10.1029/1999GC000010. Clemens, J.D., and Mawer, C.K., (1992) Granitic magma transport by fracture propagation. Tectonophysics. 204, 339-360. https://doi.org/10.1016/0040-1951(92)90316-X Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., & Chiaradia, M. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202, 382-394.https://doi.org/10.1016/j.lithos.2014.05.031. Condie, K.C. (2005). High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?. Lithos, 79, 491–504. https://doi.org/10.1016/j.lithos.2004.09.014 Cortés, J. (2015). CFU-PINGU. Consultado el 15 de mayo de 2020. https://vhub.org/resources/cfupingu.2015 . [ Links ] Couch, S., Sparks, R. & Carroll, M. (2001). Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature, 411, 1037–1039. https://doi.org/10.1038/35082540 Costa, A. (2005) Viscosity of high cristal content melts: Dependence on solid fraction, Geophysical Research Letters. 32. L22308, https://doi.org/10.1029/2005GL024303 Cruden, A.R., (1988), Deformation around a rising diapir modeled by creeping flow past a Sphere. Tectonics, v. 7, 1091-1101. https://doi.org/10.1029/TC007i005p01091 Cruden, A.R., and McCaffrey, K.J.W. (2001). Growth of plutons by floor subsidence: Implications for rates of emplacement, intrusion spacing and melt-extraction mechanism, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. 26, 303-315. https://doi.org/10.1016/S1464-1895(01)00060-6 Deer, W. A., Howie, R. A. & Zussman, J. (1992). An introduction to the rock-forming minerals. Hong Kong, Longman, 552–553. https://doi.org/10.1180/DHZ Defant, M. & Drummond, M. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665. https://doi.org/10.1038/347662a0. De Paolo, D.J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53 (2), 189- 202. doi:10.1016/0012-821x(81)90153-9 Errázuriz-Henao, C., Gómez-Tuena, A., Duque-Trujillo, J., & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes. Lithos, 336, 151-168. https://doi.org/10.1016/j.lithos.2019.04.007 Feininger, T. (1970). The Palestina Fault, Colombia. Geological Society of America Bulletin, 81, 1201-1216. Foster, M.D. (1960). Interpretation of composition of trioctaheral micas. USA Geological Survey. Professional Papers. 354-B, 1–49. https://doi.org/10.3133/pp354B. Gómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A. & Madrid, C.A. (2015). Notas explicativas: Mapa Geológico de Colombia. En: Gómez, J. & Almanza, M.F. (Editores), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, Bogotá, 33, 9–33. González, H. (1993). Mapa geológico de Caldas, escala 1: 250.000. Memoria Explicativa. INGEOMINAS. Bogotá, 62p. Gudmundsson, A. & Brenner, S. L. (2005). On the conditions of sheet injections and eruptions in stratovolcanoes. Bulletin of Volcanology, 67 (8), 768-782. https://doi.org/10.1007/s00445-005-0433-7 Harrison, T.M. & Watson, E.B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48 (7), 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4. Hasenaka, T. & Carmichael, I. S. (1985). The cinder cones of Michoacán—Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25 (1-2), 105-124. https://doi.org/10.1016/0377-0273(85)90007-1. Higgins, M. (2002). Closure in crystal size distribution (CSD), verification of CSD calculations and the significance of CSD fans. American Mineralogist, (87) 160–164. https://doi.org/10.2138/am-2002-0118. Higgins, M. D. & Roberge, J. (2007). Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry. Journal of Volcanology and Geothermal Research, 161 (3), 247–260. https://doi.org/10.1016/j.jvolgeores.2006.12.002. Idárraga-García, J., Kendall, J.M. & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophysics Geosystems, 17 (9), 3655–3673. https://doi.org/10.1002/2016GC006323. Irvine, T.N. & Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 (5), 523-548. https://doi.org/10.1139/e71-055. James, D. E and Murcia, L. A. (1984). Crustal contamination in northern Andean Volcanics. Journal of the Geological Society, 141, 823-830. https://doi.org/10.1144/gsjgs.141.5.0823. Jiménez, B.J. (1991). Carta geológica del municipio de Pensilvania, Caldas. Tesis de pregrado. Universidad de Caldas. Jones, D. W. R., Katz, R. F., Tian, M., Rudge, J. F. (2018). Thermal impact of magmatism in subduction zones. Earth and Planetary Science Letters, 481, 73-79. https://doi.org/10.1016/j.epsl.2017.10.015 Kawakatsu, H., and Watada, S. (2007). Seismic evidence for deep-water transportation in the mantle. Nature, 316, 1468-1471. https://doi.org/10.1126/science.1140855 Keating, G. N., Valentine, G. A., Krier, D. J. & Perry, F. V. (2008). Shallow plumbing systems for small-volume basaltic volcanoes. Bulletin of Volcanology, 70 (5), 563-582. https://doi.org/10.1007/s00445-007-0154-1. Kereszturi, G., Németh, K., Cronin, S. J., Agustín-Flores, J., Smith, I. E. & Lindsay, J. (2013). A model for calculating eruptive volumes for monogenetic volcanoes— Implication for the Quaternary Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 266, 16-33. https://doi.org/10.1016/j.jvolgeores.2013.09.003. Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas M.J., Bonin, B. & Bateman, P. (2002). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581. Leake, B., Woolley, A., Arps, C., Birch, W., Gilbert, M., Grice, J. & Linthout, K. (1997). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35 (1), 219–246. https://doi.org/10.1180/minmag.1997.061.405.13. Leal-Mejia, I. (2011). Phanerozoic Gold Metallogeny in the Colombian Andes: a tectonomagmatic approach. Tesis de Doctorado. Universidad de Barcelona. Londoño, J.M. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. Journal of Volcanology and Geothermal Research, 324, 156–168. https://10.1016/j.jvolgeores.2016.06.003. López-Isaza J.A, Luengas C. S, Velásquez L.E, Celada C.M, Sepúlveda M.J, Prieto D.A Gómez, G. M. (2018). Memoria explicativa Mapa Metalogénico de Colombia: principios, conceptos y modelos de depósito y manifestaciones u ocurrencias minerales para Colombia. Servicio Geológico Colombiano. Bogotá, Colombia. Losantos, E., Cebria, J. M., Morán-Zenteno, D. J., Martiny, B. M. & López-Ruiz, J. (2014). Condiciones de cristalización y diferenciación de las lavas del volcán El Metate (Campo volcánico de Michoacán-Guanajuato, México). Estudios Geológicos, 70 (2), 1-13. Maccaferri, F., Bonafede, M., and Rivalta, E. (2011). A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation, Journal of Volcanology and Geothermal Research, 208, 39-50. https://doi.org/10.1016/j.jvolgeores.2011.09.001 Manville, V., Németh, K. & Kano, K. (2009). Source to sink: a review of three decades of progress in the understanding of volcanoclastic processes, deposits, and hazards. Sedimentary Geology, 220 (3-4), 136-161. https://doi.org/10.1016/j.sedgeo.2009.04.022. Marín-Cerón, M. I., Leal-Mejía, H., Bernet, M. & Mesa-García, J. (2019). Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review. In: Cediel, F., Shaw, R.P., (eds). Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_8. Marschall, H. R. & Schumacher, J. C. (2012). Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5 (12), 862-867. https://doi.org/10.1038/ngeo1634 Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46 (3), 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0. Martínez, T., Valencia, R., Ceballos, H., Narváez, M., Pulgarín, A., Correa, T., Navarro, A., Murcia, A., Zuluaga, M., Rueda, G. & Pardo, V. (2014). Geología y estratigrafía del Complejo Volcánico Nevado del Ruiz. Informe final, Bogotá–Manizales–Popayán. Servicio Geológico Colombiano. Middlemost, E.A. (1994). Naming materials in the magma/igneus rock system. Earth Science Reviews, 37 (3-4), 215-234. https://doi.org/10.1016/0012-8252(94)90029-9. Monsalve, M.L., Ortiz, I.D. & Norini, G. (2019). El Escondido, a newly identified silicic quaternary volcano in the NE region of the northern volcanic segment (Central Cordillera of Colombia). Journal of Volcanology and Geothermal Research, 383, 47– 62. https://doi.org/10.1016/j.jvolgeores.2017.12.010. Mori, L. (2007). Origen del magmatismo miocénico en el sector central de la FVTM y sus implicaciones en la evolución del sistema de subducción mexicano. Tesis de Doctorado. Universidad Autónoma de México. Mori, L. (2009). Lithospheric Removal as a Trigger for Flood Basalt Magmatism in the Trans-Mexican Volcanic Belt. Journal of Petrology, 50 (11), 2157-2186. Murcia, H., Borrero, C. & Németh, K. (2017). Monogenetic volcanism in the Cordillera Central of Colombia: unknown volcanic fields associated with the northernmost Andes volcanic chain related subduction. EGU General Assembly 2017, April 23-28 Vienna, Austria. Murcia, H., Borrero, C. & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77–87. https://doi.org/10.1016/j.jvolgeores.2018.06.013. Németh, K. & Kereszturi, G. (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences, 104 (8), 2131-2146. https://doi.org/10.1007/s00531-015-1243-6. Osorio, P., Botero-Gómez, L. A., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte II): Características composicionales. Boletín de Geología, 40(3), 103- 123. https://dx.doi.org/10.18273/revbol.v40n3-2018006 Pearce, J.A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. New York, John Wiley and Sons. 525-548 Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J. and Norry, M.J. (Eds). Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, 230-249. Petford, N. (2003). Rheology of granitic magmas during ascent and emplacement, Annual Review of Earth and Planetary Science, 31, 399 – 427. https://doi.org/10.1146/annurev.earth.31.100901.141352 Pichavant, M., Montel, J.M. & Richard, L.R. (1992). Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model. Geochimica et Cosmochimica Acta, 56 (10), 3855–3861. https://doi.org/10.1016/0016- 7037(92)90178-L Rahman, S., & MacKenzie, W. S. (1969). The crystallization of ternary feldspars: a study from natural rocks. American Journal of Science, 267, 391-406. Reubi, O. & Blundy, J. (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461, 1269–1273. https://doi.org/10.1038/nature08510. Richards, J.P., Spell, T., Rameh, E., Razique, A. & Fletcher, T. (2012). High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu - Mo -Au potential: Examples from the Tethyan arcs of central and eastern Iran and Western Pakistan, Economic Geology, 107 (2), 295–332. https://doi.org/10.2113/econgeo.107.2.295 Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc‐alkaline magmas: an overview, new thermobarometric formulations and application to subduction‐related volcanoes. Contributions to Mineralogy and Petrology, 160, 45‐66. https://doi.org/10.1007/s00410-009-0465-7. Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank‐Kamenetskii, V.A., Gottardi, G., Guggenheim, S. & Robert, J. L. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46 (5), 586‐595. https://doi.org/10.1346/CCMN.1998.0460513 Rollinson, H. R. (1993). Using geochemical data: evaluation, presentation, interpretation. London: Longman Scientific and Technical. 352 p Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B.E., Walter, A.E., Arena, E.T. & Eliceiri, K.W. (2017). ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, 18 (1), 529. https://doi.org/10.1186/s12859-017-1934-z Sánchez-Torres. L., Toro, A., Murcia, H., Borrero, C., Delgado R. & Gómez-Arango. J. (2019). El Escondido tuff cone (38 ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombian Andes. Bulletin of Volcanology, 81 (71), 1-14. https://doi.org/10.1007/s00445-019-1337-2. Schmidt, M.W., and Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth and Planetary Science Letters, v. 163, p. 36379. Schmidt, M. & Poli, S. (2013). Devolatilization during subduction. Treatise on geochemistry, 4, 669-701. https://doi.org/10.1016/B978-0-08-095975-7.00321. Shelley, D. (1993). Igneous and metamorphic rocks under the microscope: classification, textures, microstructures and mineral preferred orientation. New York, United States: Chapman & Hall. https://doi.org/10.1016/S0012-821X(98)00142-3 Smith, I. E. M., & Németh, K. (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society London Special Publications, 446 (1), 1-28. Stern, C. R., Futa, K. & Muehlenbachs, K. (1984). Isotope and trace element data for orogenic andesites from the Austral Andes. Harmon R.S., Barreiro B.A. (eds) Andean Magmatism. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-7335-3_4. Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12, 144-240. https://doi.org/10.1016/0012-8252(76)90052-0 Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch fur Mineralogie. Stuttgart. Abhandlungen, 143 1-14. Sun, S.S. & McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19. Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H. & Ammon, C.J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050. Thybo, H., & Artemieva, I. M. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605-619. https://doi.org/10.1016/j.tecto.2013.05.032 Toro-Toro, L.M., Borrero-Peña, C.A. & Ayala, L.F. (2010). Petrografía y Geoquímica de las rocas ancestrales del Volcán Nevado del Ruiz. Boletín de Geología, 32, 95-105. Valentine, G. A. & Gregg, T. K. P. (2008). Continental basaltic volcanoes—processes and problems. Journal of Volcanology and Geothermal Research, 177 (4), 857-873. https://doi.org/10.1016/j.jvolgeores.2008.01.050. Valentine, G. A. & Perry, F. V. (2007). Tectonically controlled, time-predictable basal‐ tic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth and Planetary Science Letters, 261 (1-2), 201-16. https://doi.org/10.1016/j.epsl.2007.06.029. Vargas, C. A. & Mann, P. (2013). Tearing and breaking off subducted slabs as the result of collision of the Panama Arc‐Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103, 2025-2046. https://doi.org/10.1785/0120120328 Vesga, C. J. & Barrero, D. (1978). Edades K/Ar en rocas ígneas y metamórficas de la Cordillera Central de Colombia y su implicación geológica. In II Congreso Colombiano de Geología, Bogotá. Vespermann, D., Schmincke, H.U. & Ballard, R.D. (2000). Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) The Encyclopedia of volcanoes. Academic Press, San Diego. Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125 (3-4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003. Vigneresse, J.L., Tikoff, B., and Améglio, L. (1999). Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons, Tectonophysics. 302, 203-224. https://doi.org/10.1016/S0040-1951(98)00285-6 Wagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A. &. Becker T.W. (2017). Transient slab flattening beneath Colombia, Geophysical Research Letters, 44, 6616–6623. https://doi.org/10.1002/2017GL073981. Wasserburg, G.J., Jacobsen, S.B., DePaolo, D.J., McCulloch, M.T. & Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45 (12), 2311-2323. https://doi.org/10.1016/0016-7037(81)90085-5. Weber, M., Tarney, J., Kemptomh, P. & Kent, R.W. (2002). Crustal make-up of the northern Andes: evidence based on Deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345 (1-4), 49–82. https://doi.org/10.1016/S0040- 1951(01)00206-2. Wilson, B.M. (1989). Igneous Petrogenesis. A Global Tectonic Approach. Netherlands: Springer. Winchester, J.A & Floyd, P.A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2. Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185-187. Winter, J.D. (2001). An introduction to igneous and metamorphic petrology. Upper Saddle River, New Jersey, United States. Prentice Hall. Zellmer, G.F., and Annen, C. (2008). An introduction to magma dynamics. En: Annen C., Zellmer, G.F., editores, Dynamics of crustal magma transfer, storage and differentiation, Geological Society Special Publication. 304, 1-13. https://doi.org/10.1144/SP304.1 Zindler, A. & Hart, S. (1986). Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14 (1), 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Exactas y Naturales |
dc.publisher.place.spa.fl_str_mv |
Manizales |
dc.publisher.program.spa.fl_str_mv |
Maestría en Ciencias de la Tierra |
institution |
Universidad de Caldas |
bitstream.url.fl_str_mv |
https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/5/license.txt https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/1/Quiceno_Colorado_2021.pdf https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/3/ACTA%20DE%20SUSTENTACION%20July%20Quiceno.pdf https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/4/carta-autorizacion-publicacion-contenidos-repositorioinstitucional-despues-08-2020.docx https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/6/Quiceno_Colorado_2021.pdf.txt https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/8/ACTA%20DE%20SUSTENTACION%20July%20Quiceno.pdf.txt https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/7/Quiceno_Colorado_2021.pdf.jpg https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/9/ACTA%20DE%20SUSTENTACION%20July%20Quiceno.pdf.jpg |
bitstream.checksum.fl_str_mv |
2f9959eaf5b71fae44bbf9ec84150c7a ea66330db25174bcae4285ba26c42bef d71865c215ceb0381cc2a85fc396f607 40cd942e9dc6566f0ebb0433f356f496 8ffe18025241f80552870ac02d207432 477b840be1cfa99b548512c7f08a3682 cc970bd79f3aa1f438e8e32765a49c59 670a548b22b729f4e22ae336d0b17df6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital de la Universidad de Caldas |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1800536322148925440 |
spelling |
Ruiz Jiménez, Elvira Cristinaf64a47ae80478459b01a813c65ffc730Quiceno Colorado, Julydee2b5d8a8e8b99d6f944ebfd332d2592021-06-10T17:10:51Z2021-06-10T17:10:51Z2021-06-09https://repositorio.ucaldas.edu.co/handle/ucaldas/16723Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/Ilustraciones, gráficas, mapasspa: Geográfica y temporalmente, los cerros El Morro y Florencia hacen parte de la Provincia Volcánico Tectónica San Diego-Cerro Machín (PVTSC) en Colombia. Esta provincia volcánica es la consecuencia de la interacción (margen activo subductivo) entre las placas Nazca y Sudamericana que deriva en el arco magmático actual. Las características petrográficas, químicas y geotermobarométricas permitieron asociar el fundido formador de los cerros El Morro y Florencia al mismo magma que originó a los volcanes El Escondido y San Diego, también ubicados al norte de la PVTSC. Estos cuerpos, de afinidad calcoalcalina, con contenidos en sílice de 57.67 a 61.98 wt%, compuestos por microcuarzodioritas y microtonalitas (cerro El Morro), y andesitas (cerro Florencia) se encuentran encajados en las rocas del Complejo Cajamarca. Petrográficamente están constituidos por cristales de plagioclasa zonados, anfíbol, mica biotita; y para algunas rocas del cerro El Morro se observaron cuarzo y ortosa. Las relaciones isotópicas de 87Sr/86Sr y 144Nd/143Nd indican que los magmas formadores de las rocas para ambos cerros provienen de la fusión parcial de la cuña mantélica de suprasubducción, y que un proceso importante en la evolución del fundido fue la asimilación magmática en la corteza inferior. Adicionalmente, las altas relaciones Ba/Nb (308-253), valores elevados de Sr, K, Rb, Th y bajos valores de elementos HFSE como Ti, Y, Yb, Nb y Hf, sugieren procesos de cristalización fraccionada y contaminación por sedimentos de la corteza subduccida. Las características adakíticas encontradas en ambos cuerpos podría estar relacionada a que el fundido generado atravesó una corteza engrosada ocasionando que la formación de las fases minerales comience a altas presiones y como consecuencia directa se dé la cristalización tardía de las plagioclasas y las relaciones elevadas de Sr/Yb y Sr/Y. Los análisis químicos en núcleo y borde de la plagioclasa permitieron identificar una zonación normal (An60 - An32) en este mineral. El anfíbol fue clasificado como magnesiohastingsita y los cálculos geotermobarométricos sugieren rangos de profundidad de formación para este mineral entre 17 y 35 km, con temperaturas entre 971 a 1036 °C, presiones entre 467 a 911 MPa y con porcentaje de agua entre 6.67 y 9.41 wt%. Adicionalmente, las texturas de desequilibrio en los cristales de plagioclasa indicarían movimientos convectivos al interior de la cámara magmática.eng: Geographically and temporarily, the hills El Morro and Florencia are part of the Province San Diego-Cerro Machín Tectonic Volcanic (PVTSC) in Colombia. This province volcanic is the consequence of the interaction (active subductive margin) between the plates Nazca and South American that derives in the current magmatic arc. The characteristics petrographic, chemical and eothermobarometric allowed to associate the molten formation of the El Morro and Florencia hills to the same magma that originated the El Escondido volcanoes and San Diego, also located north of the PVTSC. These bodies, with a calcoalkaline affinity, with silica contents from 57.67 to 61.98 wt%, composed of microquarzodiorites and microtonalites (Cerro El Morro), and andesites (Cerro Florencia) are embedded in the rocks of the Cajamarca Complex. Petrographically they are constituted by zoned plagioclase crystals, amphibole, biotite mica; and for some rocks from Cerro El Morro, quartz and orthoosa were observed. Isotopic ratios of 87Sr / 86Sr and 144Nd / 143Nd indicate that the rock-forming magmas for both hills come from partial fusion of the suprasubduction mantle wedge, and that an important process in the evolution of the melt it was the magmatic assimilation in the lower crust. Additionally, the high Ba / Nb ratios (308-253), high values of Sr, K, Rb, Th and low values of HFSE elements such as Ti, Y, Yb, Nb and Hf, suggest processes of fractional crystallization and sediment contamination of the subduced crust. The Adakitic characteristics found in both bodies could be related to the fact that the The melt generated passed through a thickened crust causing the formation of the minerals begin at high pressures and as a direct consequence crystallization occurs late plagioclase and high Sr / Yb and Sr / Y ratios. Chemical analysis in nucleus and border of the plagioclase allowed to identify a normal zonation (An60 -An32) in this mineral. The amphibole was classified as magnesiumhastingsite and the calculations Geothermobarometrics suggest formation depth ranges for this mineral between 17 and 35 km, with temperatures between 971 and 1036 ° C, pressures between 467 and 911 MPa and with percentage of water between 6.67 and 9.41 wt%. Additionally, the imbalance textures in plagioclase crystals would indicate convective movements within the chamber magmatic.1. Introducción / 2. Objetivos/ 2.1 Objetivo general/ 2.1 Objetivos específicos/ 3. Marco geológico/ 4. Marco teórico/ 4.1. Magmatismo en zonas de subducción/ 4.2. Características químicas de los magmas generados en zonas de subducción/ 4.3. Adakitas / 4.4. Mecanismos de ascenso magmático / 4.4.1 Diapirismo/ 4.4.2 Propagación de fracturas/ 4.5. Emplazamiento de cuerpos intrusivos / 4.5.1 Geometría de los plutones/ 4.6. Vulcanismo / 4.6.1. Vulcanismo poligenético / 4.6.2. Vulcanismo monogenético/ 5. Metodología / 5.1 Análisis petrográfico/ 5.2 Química mineral/ 5.2.1. Geotermobarometría de anfíbol / 5.3 Análisis químicos de roca total/ 5.4. Isótopos de Sr y Nd/ 6. Resultados/ 6.1. Descripción de campo/ 6.1.1. Cerro El Morro/ 6.1.2. Cerro Florencia / 6.2. Análisis petrográfico/ 6.2.1. Cerro El Morro/ 6.2.2. Cerro Florencia / 6.3 Química mineral/ 6.3.1. Plagioclasas/ 6.3.2. Anfíbol / 6.3.3. Biotita/ 6.4. Análisis químicos/ 6.5. Análisis isotópicos/ 7. Discusión e interpretación de los resultados/ 7.1. Origen y evolución del magma / 7.2. Características adakíticas del magma / 7.3. Texturas de desequilibrio en cristales de plagioclasa / 7.4. Geotermobarometría / 7.4.1. Presión, temperatura y profundidad/ 7.4.2. Agua en el fundido y fugacidad de oxígeno. / 7.5. Modelo de cristalización y emplazamiento del magma/ 8. Conclusiones. ii / Lista de Referencias.MaestríaMagister en Ciencias de la TierraPetrología ígnea y geoquímicaapplication/pdfengspaCaracterísticas composicionales de los cerros El Morro y Florencia en el Departamento de Caldas, Colombia: Implicaciones sobre su origen y evolución.Trabajo de grado - Maestríahttp://purl.org/coar/resource_type/c_bdccTextinfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Facultad de Ciencias Exactas y NaturalesManizalesMaestría en Ciencias de la TierraBarbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & PardoTrujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348, 105185. https://doi.org/10.1016/j.lithos.2019.105185Barbosa-González, S. (2018). Análisis petrográfico comparativo entre dos cuerpos ígneos de Samaná (Caldas), a través de la caracterización textural y cuantitativa “CSD”. Tesis de pregrado. Universidad de Caldas.Best, M. G. & Christiansen, E. H. (2001). Igneous petrology. Oxford: Blackwell Science.Bissig, T., Leal-Mejía, H., Stevens, R. & Hart, C. (2017). High Sr/Y Magma Petrogenesis and the Link to Porphyry Mineralization as Revealed by Garnet-Bearing I-Type Granodiorite Porphyries of the Middle Cauca Au-Cu Belt, Colombia. Economic Geology, 112 (3), 551–568. https://doi.org/10.2113/econgeo.112.3.551.Blanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J. & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56 (15), 1852–1872. https://doi.org/10.1080/00206814.2014.963710Borrero, C., Murcia, H., Agustín-Flores, J., Arboleda, M. T. & Giraldo, A. M. (2017). Pyroclastic deposits of San Diego maar, central Colombia: an example of a silicic magma-related monogenetic eruption in a hard substrate. Geological Society, London, Special Publications, 446, 361-374. https://doi.org/10.1144/SP446.10.Brown, M.A., Brown, M., Carlson, W.D., and Denison, C. (1999). Topology of syntectonic melt-flow networks in the deep crust; inferences from three-dimensional images of leucosome geometry in migmatites, American Mineralogist. 84, 1793-1818Castillo, P.R. (2006). An overview of adakite petrogenesis. Chinese Science Bulletin. 51, 257-268. https://doi.org/10.1007/s11434-006-0257-7.Castro–Dorado. A. (2015) petrografía de rocas ígneas y metamórficas. Ediciones Paraninfo, SA. 1era edición, 2015. España.Chiaradia, M. (2009). Adakite-like magmas from fractional crystallization and melting assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology, 265(3-4), 468- 487.https://doi.org/10.1016/j.chemgeo.2009.05.014Class, C., Miller, D. M., Goldstein, S. L. & Langmuir C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry Geophysics Geosystems, 1 (1), 1-28. https://doi.org/10.1029/1999GC000010.Clemens, J.D., and Mawer, C.K., (1992) Granitic magma transport by fracture propagation. Tectonophysics. 204, 339-360. https://doi.org/10.1016/0040-1951(92)90316-XCochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., & Chiaradia, M. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202, 382-394.https://doi.org/10.1016/j.lithos.2014.05.031.Condie, K.C. (2005). High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?. Lithos, 79, 491–504. https://doi.org/10.1016/j.lithos.2004.09.014Cortés, J. (2015). CFU-PINGU. Consultado el 15 de mayo de 2020. https://vhub.org/resources/cfupingu.2015 . [ Links ]Couch, S., Sparks, R. & Carroll, M. (2001). Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature, 411, 1037–1039. https://doi.org/10.1038/35082540Costa, A. (2005) Viscosity of high cristal content melts: Dependence on solid fraction, Geophysical Research Letters. 32. L22308, https://doi.org/10.1029/2005GL024303Cruden, A.R., (1988), Deformation around a rising diapir modeled by creeping flow past a Sphere. Tectonics, v. 7, 1091-1101. https://doi.org/10.1029/TC007i005p01091Cruden, A.R., and McCaffrey, K.J.W. (2001). Growth of plutons by floor subsidence: Implications for rates of emplacement, intrusion spacing and melt-extraction mechanism, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. 26, 303-315. https://doi.org/10.1016/S1464-1895(01)00060-6Deer, W. A., Howie, R. A. & Zussman, J. (1992). An introduction to the rock-forming minerals. Hong Kong, Longman, 552–553. https://doi.org/10.1180/DHZDefant, M. & Drummond, M. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665. https://doi.org/10.1038/347662a0.De Paolo, D.J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53 (2), 189- 202. doi:10.1016/0012-821x(81)90153-9Errázuriz-Henao, C., Gómez-Tuena, A., Duque-Trujillo, J., & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes. Lithos, 336, 151-168. https://doi.org/10.1016/j.lithos.2019.04.007Feininger, T. (1970). The Palestina Fault, Colombia. Geological Society of America Bulletin, 81, 1201-1216.Foster, M.D. (1960). Interpretation of composition of trioctaheral micas. USA Geological Survey. Professional Papers. 354-B, 1–49. https://doi.org/10.3133/pp354B.Gómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A. & Madrid, C.A. (2015). Notas explicativas: Mapa Geológico de Colombia. En: Gómez, J. & Almanza, M.F. (Editores), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, Bogotá, 33, 9–33.González, H. (1993). Mapa geológico de Caldas, escala 1: 250.000. Memoria Explicativa. INGEOMINAS. Bogotá, 62p.Gudmundsson, A. & Brenner, S. L. (2005). On the conditions of sheet injections and eruptions in stratovolcanoes. Bulletin of Volcanology, 67 (8), 768-782. https://doi.org/10.1007/s00445-005-0433-7Harrison, T.M. & Watson, E.B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48 (7), 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4.Hasenaka, T. & Carmichael, I. S. (1985). The cinder cones of Michoacán—Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25 (1-2), 105-124. https://doi.org/10.1016/0377-0273(85)90007-1.Higgins, M. (2002). Closure in crystal size distribution (CSD), verification of CSD calculations and the significance of CSD fans. American Mineralogist, (87) 160–164. https://doi.org/10.2138/am-2002-0118.Higgins, M. D. & Roberge, J. (2007). Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry. Journal of Volcanology and Geothermal Research, 161 (3), 247–260. https://doi.org/10.1016/j.jvolgeores.2006.12.002.Idárraga-García, J., Kendall, J.M. & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophysics Geosystems, 17 (9), 3655–3673. https://doi.org/10.1002/2016GC006323.Irvine, T.N. & Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 (5), 523-548. https://doi.org/10.1139/e71-055.James, D. E and Murcia, L. A. (1984). Crustal contamination in northern Andean Volcanics. Journal of the Geological Society, 141, 823-830. https://doi.org/10.1144/gsjgs.141.5.0823.Jiménez, B.J. (1991). Carta geológica del municipio de Pensilvania, Caldas. Tesis de pregrado. Universidad de Caldas.Jones, D. W. R., Katz, R. F., Tian, M., Rudge, J. F. (2018). Thermal impact of magmatism in subduction zones. Earth and Planetary Science Letters, 481, 73-79. https://doi.org/10.1016/j.epsl.2017.10.015Kawakatsu, H., and Watada, S. (2007). Seismic evidence for deep-water transportation in the mantle. Nature, 316, 1468-1471. https://doi.org/10.1126/science.1140855Keating, G. N., Valentine, G. A., Krier, D. J. & Perry, F. V. (2008). Shallow plumbing systems for small-volume basaltic volcanoes. Bulletin of Volcanology, 70 (5), 563-582. https://doi.org/10.1007/s00445-007-0154-1.Kereszturi, G., Németh, K., Cronin, S. J., Agustín-Flores, J., Smith, I. E. & Lindsay, J. (2013). A model for calculating eruptive volumes for monogenetic volcanoes— Implication for the Quaternary Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 266, 16-33. https://doi.org/10.1016/j.jvolgeores.2013.09.003.Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas M.J., Bonin, B. & Bateman, P. (2002). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581.Leake, B., Woolley, A., Arps, C., Birch, W., Gilbert, M., Grice, J. & Linthout, K. (1997). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35 (1), 219–246. https://doi.org/10.1180/minmag.1997.061.405.13.Leal-Mejia, I. (2011). Phanerozoic Gold Metallogeny in the Colombian Andes: a tectonomagmatic approach. Tesis de Doctorado. Universidad de Barcelona.Londoño, J.M. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. Journal of Volcanology and Geothermal Research, 324, 156–168. https://10.1016/j.jvolgeores.2016.06.003.López-Isaza J.A, Luengas C. S, Velásquez L.E, Celada C.M, Sepúlveda M.J, Prieto D.A Gómez, G. M. (2018). Memoria explicativa Mapa Metalogénico de Colombia: principios, conceptos y modelos de depósito y manifestaciones u ocurrencias minerales para Colombia. Servicio Geológico Colombiano. Bogotá, Colombia.Losantos, E., Cebria, J. M., Morán-Zenteno, D. J., Martiny, B. M. & López-Ruiz, J. (2014). Condiciones de cristalización y diferenciación de las lavas del volcán El Metate (Campo volcánico de Michoacán-Guanajuato, México). Estudios Geológicos, 70 (2), 1-13.Maccaferri, F., Bonafede, M., and Rivalta, E. (2011). A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation, Journal of Volcanology and Geothermal Research, 208, 39-50. https://doi.org/10.1016/j.jvolgeores.2011.09.001Manville, V., Németh, K. & Kano, K. (2009). Source to sink: a review of three decades of progress in the understanding of volcanoclastic processes, deposits, and hazards. Sedimentary Geology, 220 (3-4), 136-161. https://doi.org/10.1016/j.sedgeo.2009.04.022.Marín-Cerón, M. I., Leal-Mejía, H., Bernet, M. & Mesa-García, J. (2019). Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review. In: Cediel, F., Shaw, R.P., (eds). Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_8.Marschall, H. R. & Schumacher, J. C. (2012). Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5 (12), 862-867. https://doi.org/10.1038/ngeo1634Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46 (3), 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0.Martínez, T., Valencia, R., Ceballos, H., Narváez, M., Pulgarín, A., Correa, T., Navarro, A., Murcia, A., Zuluaga, M., Rueda, G. & Pardo, V. (2014). Geología y estratigrafía del Complejo Volcánico Nevado del Ruiz. Informe final, Bogotá–Manizales–Popayán. Servicio Geológico Colombiano.Middlemost, E.A. (1994). Naming materials in the magma/igneus rock system. Earth Science Reviews, 37 (3-4), 215-234. https://doi.org/10.1016/0012-8252(94)90029-9.Monsalve, M.L., Ortiz, I.D. & Norini, G. (2019). El Escondido, a newly identified silicic quaternary volcano in the NE region of the northern volcanic segment (Central Cordillera of Colombia). Journal of Volcanology and Geothermal Research, 383, 47– 62. https://doi.org/10.1016/j.jvolgeores.2017.12.010.Mori, L. (2007). Origen del magmatismo miocénico en el sector central de la FVTM y sus implicaciones en la evolución del sistema de subducción mexicano. Tesis de Doctorado. Universidad Autónoma de México.Mori, L. (2009). Lithospheric Removal as a Trigger for Flood Basalt Magmatism in the Trans-Mexican Volcanic Belt. Journal of Petrology, 50 (11), 2157-2186.Murcia, H., Borrero, C. & Németh, K. (2017). Monogenetic volcanism in the Cordillera Central of Colombia: unknown volcanic fields associated with the northernmost Andes volcanic chain related subduction. EGU General Assembly 2017, April 23-28 Vienna, Austria.Murcia, H., Borrero, C. & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77–87. https://doi.org/10.1016/j.jvolgeores.2018.06.013.Németh, K. & Kereszturi, G. (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences, 104 (8), 2131-2146. https://doi.org/10.1007/s00531-015-1243-6.Osorio, P., Botero-Gómez, L. A., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte II): Características composicionales. Boletín de Geología, 40(3), 103- 123. https://dx.doi.org/10.18273/revbol.v40n3-2018006Pearce, J.A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. New York, John Wiley and Sons. 525-548Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J. and Norry, M.J. (Eds). Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, 230-249.Petford, N. (2003). Rheology of granitic magmas during ascent and emplacement, Annual Review of Earth and Planetary Science, 31, 399 – 427. https://doi.org/10.1146/annurev.earth.31.100901.141352Pichavant, M., Montel, J.M. & Richard, L.R. (1992). Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model. Geochimica et Cosmochimica Acta, 56 (10), 3855–3861. https://doi.org/10.1016/0016- 7037(92)90178-LRahman, S., & MacKenzie, W. S. (1969). The crystallization of ternary feldspars: a study from natural rocks. American Journal of Science, 267, 391-406.Reubi, O. & Blundy, J. (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461, 1269–1273. https://doi.org/10.1038/nature08510.Richards, J.P., Spell, T., Rameh, E., Razique, A. & Fletcher, T. (2012). High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu - Mo -Au potential: Examples from the Tethyan arcs of central and eastern Iran and Western Pakistan, Economic Geology, 107 (2), 295–332. https://doi.org/10.2113/econgeo.107.2.295Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc‐alkaline magmas: an overview, new thermobarometric formulations and application to subduction‐related volcanoes. Contributions to Mineralogy and Petrology, 160, 45‐66. https://doi.org/10.1007/s00410-009-0465-7.Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank‐Kamenetskii, V.A., Gottardi, G., Guggenheim, S. & Robert, J. L. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46 (5), 586‐595. https://doi.org/10.1346/CCMN.1998.0460513Rollinson, H. R. (1993). Using geochemical data: evaluation, presentation, interpretation. London: Longman Scientific and Technical. 352 pRueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B.E., Walter, A.E., Arena, E.T. & Eliceiri, K.W. (2017). ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, 18 (1), 529. https://doi.org/10.1186/s12859-017-1934-zSánchez-Torres. L., Toro, A., Murcia, H., Borrero, C., Delgado R. & Gómez-Arango. J. (2019). El Escondido tuff cone (38 ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombian Andes. Bulletin of Volcanology, 81 (71), 1-14. https://doi.org/10.1007/s00445-019-1337-2.Schmidt, M.W., and Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth and Planetary Science Letters, v. 163, p. 36379.Schmidt, M. & Poli, S. (2013). Devolatilization during subduction. Treatise on geochemistry, 4, 669-701. https://doi.org/10.1016/B978-0-08-095975-7.00321.Shelley, D. (1993). Igneous and metamorphic rocks under the microscope: classification, textures, microstructures and mineral preferred orientation. New York, United States: Chapman & Hall. https://doi.org/10.1016/S0012-821X(98)00142-3Smith, I. E. M., & Németh, K. (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society London Special Publications, 446 (1), 1-28.Stern, C. R., Futa, K. & Muehlenbachs, K. (1984). Isotope and trace element data for orogenic andesites from the Austral Andes. Harmon R.S., Barreiro B.A. (eds) Andean Magmatism. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-7335-3_4.Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12, 144-240. https://doi.org/10.1016/0012-8252(76)90052-0Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch fur Mineralogie. Stuttgart. Abhandlungen, 143 1-14.Sun, S.S. & McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H. & Ammon, C.J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050.Thybo, H., & Artemieva, I. M. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605-619. https://doi.org/10.1016/j.tecto.2013.05.032Toro-Toro, L.M., Borrero-Peña, C.A. & Ayala, L.F. (2010). Petrografía y Geoquímica de las rocas ancestrales del Volcán Nevado del Ruiz. Boletín de Geología, 32, 95-105.Valentine, G. A. & Gregg, T. K. P. (2008). Continental basaltic volcanoes—processes and problems. Journal of Volcanology and Geothermal Research, 177 (4), 857-873. https://doi.org/10.1016/j.jvolgeores.2008.01.050.Valentine, G. A. & Perry, F. V. (2007). Tectonically controlled, time-predictable basal‐ tic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth and Planetary Science Letters, 261 (1-2), 201-16. https://doi.org/10.1016/j.epsl.2007.06.029.Vargas, C. A. & Mann, P. (2013). Tearing and breaking off subducted slabs as the result of collision of the Panama Arc‐Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103, 2025-2046. https://doi.org/10.1785/0120120328Vesga, C. J. & Barrero, D. (1978). Edades K/Ar en rocas ígneas y metamórficas de la Cordillera Central de Colombia y su implicación geológica. In II Congreso Colombiano de Geología, Bogotá.Vespermann, D., Schmincke, H.U. & Ballard, R.D. (2000). Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) The Encyclopedia of volcanoes. Academic Press, San Diego.Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125 (3-4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003.Vigneresse, J.L., Tikoff, B., and Améglio, L. (1999). Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons, Tectonophysics. 302, 203-224. https://doi.org/10.1016/S0040-1951(98)00285-6Wagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A. &. Becker T.W. (2017). Transient slab flattening beneath Colombia, Geophysical Research Letters, 44, 6616–6623. https://doi.org/10.1002/2017GL073981.Wasserburg, G.J., Jacobsen, S.B., DePaolo, D.J., McCulloch, M.T. & Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45 (12), 2311-2323. https://doi.org/10.1016/0016-7037(81)90085-5.Weber, M., Tarney, J., Kemptomh, P. & Kent, R.W. (2002). Crustal make-up of the northern Andes: evidence based on Deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345 (1-4), 49–82. https://doi.org/10.1016/S0040- 1951(01)00206-2.Wilson, B.M. (1989). Igneous Petrogenesis. A Global Tectonic Approach. Netherlands: Springer.Winchester, J.A & Floyd, P.A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2.Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185-187.Winter, J.D. (2001). An introduction to igneous and metamorphic petrology. Upper Saddle River, New Jersey, United States. Prentice Hall.Zellmer, G.F., and Annen, C. (2008). An introduction to magma dynamics. En: Annen C., Zellmer, G.F., editores, Dynamics of crustal magma transfer, storage and differentiation, Geological Society Special Publication. 304, 1-13. https://doi.org/10.1144/SP304.1Zindler, A. & Hart, S. (1986). Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14 (1), 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAnálisis químicoGeomorfologíaRocasVulcanologíaMagmatismoZonaciónGeotermobarometríaCerro El MorroCerro FlorenciaSamanáLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/5/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD55ORIGINALQuiceno_Colorado_2021.pdfQuiceno_Colorado_2021.pdfapplication/pdf3699323https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/1/Quiceno_Colorado_2021.pdfea66330db25174bcae4285ba26c42befMD51ACTA DE SUSTENTACION July Quiceno.pdfACTA DE SUSTENTACION July Quiceno.pdfapplication/pdf284240https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/3/ACTA%20DE%20SUSTENTACION%20July%20Quiceno.pdfd71865c215ceb0381cc2a85fc396f607MD53carta-autorizacion-publicacion-contenidos-repositorioinstitucional-despues-08-2020.docxcarta-autorizacion-publicacion-contenidos-repositorioinstitucional-despues-08-2020.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document87089https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/4/carta-autorizacion-publicacion-contenidos-repositorioinstitucional-despues-08-2020.docx40cd942e9dc6566f0ebb0433f356f496MD54TEXTQuiceno_Colorado_2021.pdf.txtQuiceno_Colorado_2021.pdf.txtExtracted texttext/plain125782https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/6/Quiceno_Colorado_2021.pdf.txt8ffe18025241f80552870ac02d207432MD56ACTA DE SUSTENTACION July Quiceno.pdf.txtACTA DE SUSTENTACION July Quiceno.pdf.txtExtracted texttext/plain2621https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/8/ACTA%20DE%20SUSTENTACION%20July%20Quiceno.pdf.txt477b840be1cfa99b548512c7f08a3682MD58THUMBNAILQuiceno_Colorado_2021.pdf.jpgQuiceno_Colorado_2021.pdf.jpgGenerated Thumbnailimage/jpeg5615https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/7/Quiceno_Colorado_2021.pdf.jpgcc970bd79f3aa1f438e8e32765a49c59MD57ACTA DE SUSTENTACION July Quiceno.pdf.jpgACTA DE SUSTENTACION July Quiceno.pdf.jpgGenerated Thumbnailimage/jpeg14733https://repositorio.ucaldas.edu.co/bitstream/ucaldas/16723/9/ACTA%20DE%20SUSTENTACION%20July%20Quiceno.pdf.jpg670a548b22b729f4e22ae336d0b17df6MD59ucaldas/16723oai:repositorio.ucaldas.edu.co:ucaldas/167232021-10-11 16:18:43.247Repositorio Digital de la Universidad de Caldasbdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |