Chaotic Space–Time

En este artículo se demuestra cómo la consideración de una mecánica caótica suministra una redefinición del  espacio-tiempo en la teoría de la relatividad especial. En particular, el tiempo caótico significa que no hay una  posibilidad de definir el ordenamiento temporal lo...

Full description

Autores:
Giannetto, Enrico
Giunta, Gaetano
Marino, Domenico
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/15068
Acceso en línea:
https://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/view/755
Palabra clave:
Chaos
non-linear dynamics
relativity
space-time
Caos
dinámica no lineal
relatividad
espacio-tiempo
Rights
openAccess
License
Derechos de autor 2014 Discusiones Filosóficas
id RUCALDAS2_43750fc21966bd79562b4d0dabcc8de4
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/15068
network_acronym_str RUCALDAS2
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.spa.fl_str_mv Chaotic Space–Time
dc.title.translated.eng.fl_str_mv Espacio-tiempo caótico
title Chaotic Space–Time
spellingShingle Chaotic Space–Time
Chaos
non-linear dynamics
relativity
space-time
Caos
dinámica no lineal
relatividad
espacio-tiempo
title_short Chaotic Space–Time
title_full Chaotic Space–Time
title_fullStr Chaotic Space–Time
title_full_unstemmed Chaotic Space–Time
title_sort Chaotic Space–Time
dc.creator.fl_str_mv Giannetto, Enrico
Giunta, Gaetano
Marino, Domenico
dc.contributor.author.spa.fl_str_mv Giannetto, Enrico
Giunta, Gaetano
Marino, Domenico
dc.subject.eng.fl_str_mv Chaos
non-linear dynamics
relativity
space-time
topic Chaos
non-linear dynamics
relativity
space-time
Caos
dinámica no lineal
relatividad
espacio-tiempo
dc.subject.spa.fl_str_mv Caos
dinámica no lineal
relatividad
espacio-tiempo
description En este artículo se demuestra cómo la consideración de una mecánica caótica suministra una redefinición del  espacio-tiempo en la teoría de la relatividad especial. En particular, el tiempo caótico significa que no hay una  posibilidad de definir el ordenamiento temporal lo que implica una ruptura de la causalidad. Las nuevas  transformaciones caóticas entre las coordenadas espaciotemporales ‘indeterminadas’ no son más lineales y  homogéneas. Los principios de inercia y el impulso de la conservación de la energía ya no son bien definidos y  en todo caso no son más invariantes.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2014-06-20 00:00:00
dc.date.available.none.fl_str_mv 2014-06-20 00:00:00
dc.date.issued.none.fl_str_mv 2014-06-20
dc.type.spa.fl_str_mv Artículo de revista
Sección Artículos
dc.type.eng.fl_str_mv Journal Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0124-6127
dc.identifier.uri.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/view/755
dc.identifier.eissn.none.fl_str_mv 2462-9596
identifier_str_mv 0124-6127
2462-9596
url https://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/view/755
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 97
dc.relation.citationissue.spa.fl_str_mv 24
dc.relation.citationstartpage.none.fl_str_mv 87
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournal.spa.fl_str_mv Discusiones Filosóficas
dc.relation.references.eng.fl_str_mv Agodi, Attilio and Anthony Cassarino. “Time ordering and the Lorentz group”. Foundations of Physics. Feb. 1982: 137-152. Print.
Anderson, Philip W., Arrow, Kenneth and David Pines. Eds. The Economy as Evolving Complex System. New York: Wesley Publishing Company, 1988. Print.
Arecchi, F. Tito, Basti, Gianfranco, Boccaletti, Stefano and Alessio Perrone. “Adaptive recognition of a chaotic dynamics”. Europhysics Letters. 1994: 327-332. Print.
Bai‑lin, Hao. Chaos, No. 1. Singapore: World Scientific, 1984. Print.
Barrow, John D. “Chaotic behaviour in general relativity”. Physics Reports. May. 1982: 1-49. Print.
---. “General relativistic chaos and nonlinear dynamics”. General Relativity and Gravitation. Jun. 1982: 523-524. Print.
Barut, Asim O. Geometry and Physics: Non-Newtonian Forms of Dynamics. New York: Humanities Press International, 1990. Print.
Born, Max, Hooton, D.J. and Nevill F. Mott. “Statistical dynamics of multiply-periodic systems”. Mathematical Proceedings of the Cambridge Philosophical Society. Apr. 1956: 287-300. Print.
Chernikov, AA., Tél, T., Vattay, G. and G. M. Zaslavsky. “Chaos in the relativistic generalization of the standard map”. Phys. Rev. Oct. 1989: 4072. Print.
da Costa, Newton and Franciso Antonio Doria. “Undecidability and incompleteness in classical mechanics”. Internat. J. Theoret. Phys. 1991: 1041-1073. Print.
Di Prisco, Alicia, Herrera, Luis and Jaume Carot. “On the chaotic behaviour induced by surface phenomena in some general relativistic stellar models”. Physics Letters A. May. 1990: 105-109. Print.
Dilts, Gary. “Chaotic plane-wave solutions for the relativistic selfinteracting quantum electron”. Physica D: Nonlinear Phenomena. Dec. 1986: 470-478. Print.
Earman, John. A Primer on Determinism. Dordrecht: Springer, 1986. Print.
Eckmann, Jean-Pierre and David Ruelle. “Addendum: Ergodic theory of chaos and strange attractors”. Rev. Mod. Phys. Oct. 1985: 1115. Print.
Einstein, Albert. “Zur Elektrodynamik bewegter Körper”. Annalen der Physik. 1905: 891-921. Print.
Eddington, Arthur S. The Mathematical theory of relativity. Cambridge: Cambridge University Press, 1923. Print.
---. The Nature of the Physical World. Michigan: MacMillan, 1928. Print.
Finkelstein, David. “Matter, space and logic”. Boston Studies in the Philosophy of Science. 1968: 199-215. Print.
Giannetto, Enrico. “Henri Poincaré and the rise of special relativity”. Hadronic Journal. 1995 (Sup.): 365-433. Print.
---. “Max Born and the Rise of Chaos Physics”. Atti del XIII Congresso Nazionale di Storia della Fisica. Ed. Andrea Rossi. Lecce: Conte, 1995. Print.
Havas, Peter. “Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity”. Reviews of Modern Physics. Oct. 1964: 938. Print.
Il‑Tong, Cheon. “Extended Theory of Special Relativity and Photon Mass”. Lettere al Nuovo Cimento. Dic. 1980: 518-520. Print.
Klein, Felix. “Vergleichende Betrachtungen über neuere geometrische Forschungen”. Math. Ann. 1893: 63-100. Print.
Lorenz, Edward. “Deterministic Nonperiodic Flow”. Journal of the Atmospheric. 1963: 130-141. Print.
Moore, Cristopher. “Unpredictability and undecidability in dynamical systems”. Phys. Rev. Lett. May. 1990: 2354. Print.
Poincaré, Henri. Les méthodes nouvelles de la mécanique céleste. Paris: Gauthier Villars, 1899. Print.
---. “L’état actuel et l’avenir de la physique mathématique”. Bulletin des Sciences Mathématiques. 1904: 302-324. Print.
---. “Sur la dynamique de l’électron”. Comptes Rendus de l’Académie des Sciences. 1905: 1504-1508. Print.
---. “On the dynamics of the electron: Introduction”. Rendiconti del Circolo Matematico di Palermo. 1906: 129-145. Print.
Prigogine, Ilya. La nascita del tempo. Napoli: Theoria, 1988. Print.
---. Le leggi del caos. Bari: Laterza, 1993. Print.
Rasband, S. Neil. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, 1990. Print.
Ruelle, David. Elements of differentiable dynamics and bifurcation theory. New York: Academic Press, 1989. Print.
Schroeder, Manfred. Fractals, Chaos, Power Laws: Minutes from an infinite paradise. London: Dover Publications, 2009. Print.
Segal, Ezra. Mathematical Cosmology and Extragalactic Astronomy. New York: Accademic Press, 1976. Print.
Svozil, Karl. “Quantum field theory on fractal spacetime: A new regularisation method”. Journal of Physics A: Mathematical and General. 1987: 3961. Print.
Svozil, Karl and Anton Zeilinger. Dimension of Space-Time. Vienna: Institut für Theoretische Physik, 1985. Print.
Tyapkin, Alexey. “Expression of the General Properties of Physical Processes in the Space-Time Metric of the Special Theory of Relativity”. Soviet Physics Uspekhi. 1972: 205-225. Print.
Whitehead, Alfred North. Space, Time and Relativity. Proceedings of the Aristotelian Society. 1915-1916: 104-129. Print.
Zak, Michail. “Introduction to Terminal Dynamics”. International Journal of Theoretical Physics. 1993: 59-87. Print.
Zardecki, Andrew. “Modeling in chaotic relativity”. Phys. Rev. Sep. 1983: 1235. Print.
Zeeman, E.C. “Causality Implies the Lorentz Group”. J. Math. Phys. Apr. 1964: 490-493. Print.
Zeilinger, Anton and Karl Svozil. “Measuring the Dimension spacetime”. Phys Rev. Lett. Jun. 1985: 2553. Print.
dc.relation.citationedition.spa.fl_str_mv Núm. 24 , Año 2014 : Enero - Junio
dc.relation.bitstream.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/download/755/678
dc.rights.eng.fl_str_mv Derechos de autor 2014 Discusiones Filosóficas
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2014 Discusiones Filosóficas
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Caldas
dc.source.eng.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/view/755
institution Universidad de Caldas
bitstream.url.fl_str_mv https://repositorio.ucaldas.edu.co/bitstream/ucaldas/15068/1/ORE.xml
bitstream.checksum.fl_str_mv 1ae939f31778a59e6d37a38e5c630e85
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad de Caldas
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1800536460100632576
spelling Giannetto, Enrico1e6e272cdf0f2907332a10c2783120f8Giunta, Gaetanoda3bb26e5b26118715bef411b5f3254aMarino, Domenico8f00b0e8923842ebc1709134f2909d0b2014-06-20 00:00:002014-06-20 00:00:002014-06-200124-6127https://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/view/7552462-9596En este artículo se demuestra cómo la consideración de una mecánica caótica suministra una redefinición del  espacio-tiempo en la teoría de la relatividad especial. En particular, el tiempo caótico significa que no hay una  posibilidad de definir el ordenamiento temporal lo que implica una ruptura de la causalidad. Las nuevas  transformaciones caóticas entre las coordenadas espaciotemporales ‘indeterminadas’ no son más lineales y  homogéneas. Los principios de inercia y el impulso de la conservación de la energía ya no son bien definidos y  en todo caso no son más invariantes.In this paper we have shown how the consideration of a chaotic mechanics supplies a redefinition of  special‑relativistic space‑time. In particular chaotic time means no possibility of defining temporal ordering and  implies a breakdown of causality. The new chaotic transformations among ‘undetermined’ space‑time  coordinates are no more linear and homogeneous. The principles of inertia and of energy‑impulse conservation are no longer well defined and in any case no more invariant.application/pdfengUniversidad de CaldasDerechos de autor 2014 Discusiones Filosóficashttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/view/755Chaosnon-linear dynamicsrelativityspace-timeCaosdinámica no linealrelatividadespacio-tiempoChaotic Space–TimeEspacio-tiempo caóticoArtículo de revistaSección ArtículosJournal Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8597248715Discusiones FilosóficasAgodi, Attilio and Anthony Cassarino. “Time ordering and the Lorentz group”. Foundations of Physics. Feb. 1982: 137-152. Print.Anderson, Philip W., Arrow, Kenneth and David Pines. Eds. The Economy as Evolving Complex System. New York: Wesley Publishing Company, 1988. Print.Arecchi, F. Tito, Basti, Gianfranco, Boccaletti, Stefano and Alessio Perrone. “Adaptive recognition of a chaotic dynamics”. Europhysics Letters. 1994: 327-332. Print.Bai‑lin, Hao. Chaos, No. 1. Singapore: World Scientific, 1984. Print.Barrow, John D. “Chaotic behaviour in general relativity”. Physics Reports. May. 1982: 1-49. Print.---. “General relativistic chaos and nonlinear dynamics”. General Relativity and Gravitation. Jun. 1982: 523-524. Print.Barut, Asim O. Geometry and Physics: Non-Newtonian Forms of Dynamics. New York: Humanities Press International, 1990. Print.Born, Max, Hooton, D.J. and Nevill F. Mott. “Statistical dynamics of multiply-periodic systems”. Mathematical Proceedings of the Cambridge Philosophical Society. Apr. 1956: 287-300. Print.Chernikov, AA., Tél, T., Vattay, G. and G. M. Zaslavsky. “Chaos in the relativistic generalization of the standard map”. Phys. Rev. Oct. 1989: 4072. Print.da Costa, Newton and Franciso Antonio Doria. “Undecidability and incompleteness in classical mechanics”. Internat. J. Theoret. Phys. 1991: 1041-1073. Print.Di Prisco, Alicia, Herrera, Luis and Jaume Carot. “On the chaotic behaviour induced by surface phenomena in some general relativistic stellar models”. Physics Letters A. May. 1990: 105-109. Print.Dilts, Gary. “Chaotic plane-wave solutions for the relativistic selfinteracting quantum electron”. Physica D: Nonlinear Phenomena. Dec. 1986: 470-478. Print.Earman, John. A Primer on Determinism. Dordrecht: Springer, 1986. Print.Eckmann, Jean-Pierre and David Ruelle. “Addendum: Ergodic theory of chaos and strange attractors”. Rev. Mod. Phys. Oct. 1985: 1115. Print.Einstein, Albert. “Zur Elektrodynamik bewegter Körper”. Annalen der Physik. 1905: 891-921. Print.Eddington, Arthur S. The Mathematical theory of relativity. Cambridge: Cambridge University Press, 1923. Print.---. The Nature of the Physical World. Michigan: MacMillan, 1928. Print.Finkelstein, David. “Matter, space and logic”. Boston Studies in the Philosophy of Science. 1968: 199-215. Print.Giannetto, Enrico. “Henri Poincaré and the rise of special relativity”. Hadronic Journal. 1995 (Sup.): 365-433. Print.---. “Max Born and the Rise of Chaos Physics”. Atti del XIII Congresso Nazionale di Storia della Fisica. Ed. Andrea Rossi. Lecce: Conte, 1995. Print.Havas, Peter. “Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity”. Reviews of Modern Physics. Oct. 1964: 938. Print.Il‑Tong, Cheon. “Extended Theory of Special Relativity and Photon Mass”. Lettere al Nuovo Cimento. Dic. 1980: 518-520. Print.Klein, Felix. “Vergleichende Betrachtungen über neuere geometrische Forschungen”. Math. Ann. 1893: 63-100. Print.Lorenz, Edward. “Deterministic Nonperiodic Flow”. Journal of the Atmospheric. 1963: 130-141. Print.Moore, Cristopher. “Unpredictability and undecidability in dynamical systems”. Phys. Rev. Lett. May. 1990: 2354. Print.Poincaré, Henri. Les méthodes nouvelles de la mécanique céleste. Paris: Gauthier Villars, 1899. Print.---. “L’état actuel et l’avenir de la physique mathématique”. Bulletin des Sciences Mathématiques. 1904: 302-324. Print.---. “Sur la dynamique de l’électron”. Comptes Rendus de l’Académie des Sciences. 1905: 1504-1508. Print.---. “On the dynamics of the electron: Introduction”. Rendiconti del Circolo Matematico di Palermo. 1906: 129-145. Print.Prigogine, Ilya. La nascita del tempo. Napoli: Theoria, 1988. Print.---. Le leggi del caos. Bari: Laterza, 1993. Print.Rasband, S. Neil. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, 1990. Print.Ruelle, David. Elements of differentiable dynamics and bifurcation theory. New York: Academic Press, 1989. Print.Schroeder, Manfred. Fractals, Chaos, Power Laws: Minutes from an infinite paradise. London: Dover Publications, 2009. Print.Segal, Ezra. Mathematical Cosmology and Extragalactic Astronomy. New York: Accademic Press, 1976. Print.Svozil, Karl. “Quantum field theory on fractal spacetime: A new regularisation method”. Journal of Physics A: Mathematical and General. 1987: 3961. Print.Svozil, Karl and Anton Zeilinger. Dimension of Space-Time. Vienna: Institut für Theoretische Physik, 1985. Print.Tyapkin, Alexey. “Expression of the General Properties of Physical Processes in the Space-Time Metric of the Special Theory of Relativity”. Soviet Physics Uspekhi. 1972: 205-225. Print.Whitehead, Alfred North. Space, Time and Relativity. Proceedings of the Aristotelian Society. 1915-1916: 104-129. Print.Zak, Michail. “Introduction to Terminal Dynamics”. International Journal of Theoretical Physics. 1993: 59-87. Print.Zardecki, Andrew. “Modeling in chaotic relativity”. Phys. Rev. Sep. 1983: 1235. Print.Zeeman, E.C. “Causality Implies the Lorentz Group”. J. Math. Phys. Apr. 1964: 490-493. Print.Zeilinger, Anton and Karl Svozil. “Measuring the Dimension spacetime”. Phys Rev. Lett. Jun. 1985: 2553. Print.Núm. 24 , Año 2014 : Enero - Juniohttps://revistasojs.ucaldas.edu.co/index.php/discusionesfilosoficas/article/download/755/678OREORE.xmltext/xml2534https://repositorio.ucaldas.edu.co/bitstream/ucaldas/15068/1/ORE.xml1ae939f31778a59e6d37a38e5c630e85MD51ucaldas/15068oai:repositorio.ucaldas.edu.co:ucaldas/150682021-06-27 10:07:18.824Repositorio Digital de la Universidad de Caldasbdigital@metabiblioteca.com