Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.

Los maestros de música generalmente afirman que, según su experiencia, la música beneficia de diversas maneras a los estudiantes. En esta investigación evaluamos la afirmación que apunta a que la música lleva a los estudiantes a trabajar mejor en equipo. 15 grupos de 5 personas, cada uno conformado...

Full description

Autores:
Moreno Buitrago, Natalia Elízabeth
Pérez Ariza, Juan Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Pedagógica Nacional
Repositorio:
Repositorio Institucional UPN
Idioma:
spa
OAI Identifier:
oai:repository.pedagogica.edu.co:20.500.12209/10443
Acceso en línea:
http://hdl.handle.net/20.500.12209/10443
Palabra clave:
Música y sociedad
Musicalidad,
Cohesión social
Trabajo en equipo
Niños - Música
Evolución
Pedagogía y cognición
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id RPEDAGO2_f063e1183c5db4f3db5d650e2126de5d
oai_identifier_str oai:repository.pedagogica.edu.co:20.500.12209/10443
network_acronym_str RPEDAGO2
network_name_str Repositorio Institucional UPN
repository_id_str
dc.title.spa.fl_str_mv Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
title Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
spellingShingle Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
Música y sociedad
Musicalidad,
Cohesión social
Trabajo en equipo
Niños - Música
Evolución
Pedagogía y cognición
title_short Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
title_full Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
title_fullStr Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
title_full_unstemmed Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
title_sort Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
dc.creator.fl_str_mv Moreno Buitrago, Natalia Elízabeth
Pérez Ariza, Juan Felipe
dc.contributor.advisor.spa.fl_str_mv Leongómez Peña, Juan David
dc.contributor.author.spa.fl_str_mv Moreno Buitrago, Natalia Elízabeth
Pérez Ariza, Juan Felipe
dc.subject.spa.fl_str_mv Música y sociedad
Musicalidad,
Cohesión social
Trabajo en equipo
Niños - Música
Evolución
Pedagogía y cognición
topic Música y sociedad
Musicalidad,
Cohesión social
Trabajo en equipo
Niños - Música
Evolución
Pedagogía y cognición
description Los maestros de música generalmente afirman que, según su experiencia, la música beneficia de diversas maneras a los estudiantes. En esta investigación evaluamos la afirmación que apunta a que la música lleva a los estudiantes a trabajar mejor en equipo. 15 grupos de 5 personas, cada uno conformado por hombres y mujeres desconocidos entre sí, y de edades entre los 18 y 28 años de diferentes universidades de Bogotá, fueron asignados a tres condiciones: rítmica, ritmomelódica y control. Cada grupo debía componer o improvisar algo que los representara grupalmente: En la condición rítmica, los participantes debían componer o improvisar un ritmo entre los cinco e interpretarlo; en la condición ritmomelódica, los participantes debían componer una canción o cantar alguna existente que los representara; y finalmente, en el control, los participantes debían crear una frase o un slogan que no tuviera ningún tipo de rasgo musical. Acto seguido, cada grupo debía trabajar en equipo para completar dos actividades. En primer lugar, debían desenredar cinco cuerdas anudadas de manera estándar siguiendo unas reglas específicas. Luego de desenredarlas, debían armar un rompecabezas entre los cinco, para lo cual, dos integrantes del grupo debían vendarse los ojos y manipular las fichas, mientras que los tres restantes daban las instrucciones en un orden específico. El tiempo de ejecución era cronometrado desde que empezaban a desenredar las cuerdas hasta que ponían la última ficha del rompecabezas. Los datos fueron analizados realizando un análisis de covarianza, comparando el promedio del tiempo de ejecución de cada condición y controlando tres covariables: I) el promedio grupal del resultado de la prueba de musicalidad y el promedio grupal de los índices psicométricos de II) dominancia y III) prestigio. Los resultados no permiten inferir con suficiente certeza una relación entre las condiciones experimentales y el tiempo de ejecución de las pruebas de trabajo grupal (p = 0.797). Las implicaciones de estos resultados fueron analizados a la luz de una revisión bibliográfica en la que indagamos sobre las diferentes hipótesis que le aportan a la música un valor evolutivo.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-23T15:56:31Z
dc.date.available.none.fl_str_mv 2019-09-23T15:56:31Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía – Pregrado
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12209/10443
dc.identifier.instname.spa.fl_str_mv instname:Universidad Pedagógica Nacional
instname:Universidad Pedagógica Nacional
dc.identifier.reponame.spa.fl_str_mv reponame: Repositorio Institucional UPN
dc.identifier.repourl.none.fl_str_mv repourl: http://repositorio.pedagogica.edu.co/
url http://hdl.handle.net/20.500.12209/10443
identifier_str_mv instname:Universidad Pedagógica Nacional
reponame: Repositorio Institucional UPN
repourl: http://repositorio.pedagogica.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agustus, J. L., Mahoney, C. J., Downey, L. E., Omar, R., Cohen, M., White, M. J., … Warren, J. D. (2015). Functional MRI of music emotion processing in frontotemporal dementia. Annals of the New York Academy of Sciences, 1337(1), 232–240. https://doi.org/10.1111/nyas.12620
Aiello, L. C., & Dunbar, R. I. M. (1993). Neocortex Size, Group Size, and the Evolution of Language. Current Anthropology, 34(2), 184–193. https://doi.org/10.2307/2743982
Albert, M. L., Sparks, R. W., & Helm, N. A. (1973). Melodic intonation therapy for aphasia. Archives of Neurology, 29(2), 130–131.
Altenmüller, E., & Furuya, S. (2017). Apollos Gift and Curse: Making Music as a model for Adaptive and Maladaptive Plasticity. E-Neuroforum, 23(2). https://doi.org/10.1515/nf-2016-A054
Amaducci, L., Grassi, E., & Boller, F. (2002). Maurice Ravel and right-hemisphere musical creativity: Influence of disease on his last musical works? European Journal of Neurology, 9(1), 75–82. https://doi.org/10.1046/j.1468-1331.2002.00351.x
Aslan, U. (2017). Negotiating biological and cultural features of music: Towards the field of biomusicology. Rupkatha Journal on Interdisciplinary Studies in Humanities, 9(1), 2–10. https://doi.org/10.21659/rupkatha.v9n1.02
Atzil, S., Hendler, T., & Feldman, R. (2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36(13), 2603–2615. https://doi.org/10.1038/npp.2011.172
Au, W. W. L., Pack, A. A., Lammers, M. O., Herman, L. M., Deakos, M. H., & Andrews, K. (2006). Acoustic properties of humpback whale songs. The Journal of the Acoustical Society of America, 120(2), 1103–1110. https://doi.org/10.1121/1.2211547
Axelrod, R., & Dion, D. (1988). The further evolution of cooperation. Science, 242(4884), 1385–1390. https://doi.org/10.1126/science.242.4884.1385
Bannan, N. (2017). Darwin, music and evolution: New insights from family correspondence on The Descent of Man. Musicae Scientiae, 21(1), 3–25. https://doi.org/10.1177/1029864916631794
Baumgartner, T., Lutz, K., Schmidt, C. F., & Jäncke, L. (2006). The emotional power of music: How music enhances the feeling of affective pictures. Brain Research, 1075(1), 151–164. https://doi.org/10.1016/j.brainres.2005.12.065
Behague, G., & Seeger, A. (2006). Why Suya Sing. A Musical Anthropology of an Amazonian People. Latin American Music Review / Revista de Música Latinoamericana, 9(2), 260. https://doi.org/10.2307/780298
Bellinger, D., Altenmüller, E., & Volkmann, J. (2017). Perception of Time in Music in Patients with Parkinson’s Disease–The Processing of Musical Syntax Compensates for Rhythmic Deficits. Frontiers in Neuroscience, 11, 68. https://doi.org/10.3389/fnins.2017.00068
Bengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E., … Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62–71. https://doi.org/10.1016/j.cortex.2008.07.002
Benton, A. L. (1977). The Amusias. Music and the Brain, 378–397. https://doi.org/10.1016/B978-0-433-06703-0.50029-2
Berwick, R. C., Beckers, G. J. L., Okanoya, K., & Bolhuis, J. J. (2012). A bird’s eye view of human language evolution. Frontiers in Evolutionary Neuroscience, 4, 5. https://doi.org/10.3389/fnevo.2012.00005
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.
Boughman, J. W., & Moss, C. F. (2003). Social Sounds: Vocal Learning and Development of Mammal and Bird Calls. In Acoustic Communication (pp. 138–224). https://doi.org/10.1007/0-387-22762-8_4
Brainsky, Simón and Guzmán Cervantes, Eugenia and Matallana, Diana and Montaña, Clemencia and Montañés, Patricia and Morales, Hernando and Moreno Cardozo, Belén del Rocío and Morillo, Anibal and Pardo, Rodrigo and Rojas, Alejandro and Ruiz, E. (2010). Cerebro y música. In Cerebro, Arte y Creatividad. https://doi.org/10.1196
Brandily, M. (2004). Dire ou chanter? L’exemple du Tibesti (Tchad). L’Homme. Revue Française d’anthropologie, (171–172), 303–311. https://doi.org/10.4000/lhomme.24924
Brandler, S., & Rammsayer, T. H. (2003). Differences in mental abilities between musicians and non-musicians. Psychology of Music, 31(2), 123–138. https://doi.org/10.1177/0305735603031002290
Brown, S., & Jordania, J. (2013). Universals in the world’s musics. Psychology of Music, 41(2), 229–248. https://doi.org/10.1177/0305735611425896
Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport, 15(13), 2033– 2037.
Brufal A, J. D. (2013). Los principales métodos activos de educación musical en primaria. In Arseduca. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=4339750
Brust, J. C. (2001). Music and the neurologist. A historical perspective. Annals of the New York Academy of Sciences, 930, 143–152.
Buckner, M., & Margaret. (2004). Ce que nous dit la cloche manjako. L’Homme. Revue Française d’anthropologie, (171–172), 219–230. https://doi.org/10.4000/lhomme.24896
Cacioppo, J. T., Cacioppo, S., Capitanio, J. P., & Cole, S. W. (2015). The Neuroendocrinology of Social Isolation. In Annual Review of Psychology (Vol. 66). https://doi.org/10.1146/annurev-psych-010814-015240
Callan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H., & Turner, R. (2006). Song and speech: Brain regions involved with perception and covert production. NeuroImage, 31(3), 1327–1342. https://doi.org/10.1016/j.neuroimage.2006.01.036
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17(1), 37–50. https://doi.org/10.1207/s15326934crj1701_4
Casudan, E. (1995). Hormones, sex, and status in women. Hormones and Behavior, 29(3), 354–366. https://doi.org/10.1006/hbeh.1995.1025
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to Musical Rhythms Recruits Motor Regions of the Brain. Cerebral Cortex, 18(12), 2844–2854. https://doi.org/10.1093/cercor/bhn042
Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32(4), 1771–1781. https://doi.org/10.1016/j.neuroimage.2006.04.207
Cheng, J. T., Tracy, J. L., & Henrich, J. (2010). Pride, personality, and the evolutionary foundations of human social status. Evolution and Human Behavior, 31(5), 334– 347. https://doi.org/10.1016/j.evolhumbehav.2010.02.004
Chobert, J., & Besson, M. (2013). Musical expertise and second language learning. Brain Sciences, Vol. 3, pp. 923–940. https://doi.org/10.3390/brainsci3020923
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 1003–1011. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25513669
Clark, C. W., & Clapham, P. J. (2004). Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proceedings of the Royal Society B: Biological Sciences, 271(1543), 1051–1057. https://doi.org/10.1098/rspb.2004.2699
Clarke, E., DeNora, T., & Vuoskoski, J. (2015). Music, empathy and cultural understanding. Physics of Life Reviews, 15, 61–88. https://doi.org/10.1016/j.plrev.2015.09.001
Clayton, M. (2012). What is Entrainment? Definition and applications in musical research. Empirical Musicology Review, 7(1–2), 49–56. https://doi.org/10.18061/1811/52979
Clayton, M., Sager, R., & Udo, W. (2005). In time with the music : the concept of entrainment and its signicance for ethnomusicology. In European meetings in ethnomusicology (Vol. 11, pp. 1–82). Retrieved from http://dro.dur.ac.uk/8713/1/8713.pdf
Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737–740. https://doi.org/10.1038/nature08169
Črnčec, R., Wilson, S. J., & Prior, M. (2006). The cognitive and academic benefits of music to children: Facts and fiction. Educational Psychology, 26(4), 579–594. https://doi.org/10.1080/01443410500342542
Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 28–42.
Cross, I. (2016). The Nature of Music and Its Evolution The Theory of Evolution in 85 Musicological. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford Handbooks Online. (pp. 1–20). https://doi.org/10.1093/oxfordhb/9780198722946.013.5
Cross, I., & Morley, I. (2008). The evolution of music: theories, definitions and the nature of the evidence. In Communicative musicality: Exploring the basis of human companionship (pp. 61–82). Retrieved from http://www.mus.cam.ac.uk/~ic108/PDF/CM_CM08.pdf
Crowley, D. J., & Seeger, A. (2006). Nature and Society in Central Brazil: The Suya Indians of Mato Grosso. Ethnomusicology, 27(3), 539. https://doi.org/10.2307/850658
Dalla Bella, S. (2016). Music and Brain Plasticity. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford Handbook of Music Psychology (2nd ed., pp. 325–342). https://doi.org/10.1093/oxfordhb/9780198722946.013.23
Dalla Bella, S., Deutsch, D., Giguère, J.-F., Peretz, I., & Deutsch, D. (2007). Singing proficiency in the general population. The Journal of the Acoustical Society of America, 121(2), 1182–1189. https://doi.org/10.1121/1.2427111
Darwin, C. (1871). The descent of man, and Selection in relation to sex, Vol 1. https://doi.org/10.1037/12293-000
Delsing, M. J. M. H., Ter Bogt, T. F. M., Engels, R. C. M. E., & Meeus, W. H. J. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality, 22(2), 109–130. https://doi.org/10.1002/per.665
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, Vol. 28, pp. 313–350. https://doi.org/10.1017/S0140525X05000063
Di Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia, 42(7), 868–877.
Dissanayake, E. (2009). Root, leaf, blossom, or bole: Concerning the origin and adaptive function of music. In S. Malloch & C. Trevarten (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 17–30). Oxford University Press.
Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10(7), 915–921. https://doi.org/10.1038/nn1925
Drake, C., & El Heni, J. Ben. (2003). Synchronizing with Music: Intercultural Differences. Annals of the New York Academy of Sciences, 999(1), 429–437. https://doi.org/10.1196/annals.1284.053
Dufour, V., Pasquaretta, C., Gayet, P., & Sterck, E. H. M. (2017). The extraordinary nature of Barney’s drumming: A complementary study of ordinary noise making in chimpanzees. Frontiers in Neuroscience, 11, 2. https://doi.org/10.3389/fnins.2017.00002
Dunbar, R. I. M. (1991). Functional Significance of Social Grooming in Primates. Folia Primatologica, 57(3), 121–131. https://doi.org/10.1159/000156574
Dunbar, R. I. M. (2012). On the Evolutionary Function of Song and Dance. In Music, Language, and Human Evolution (pp. 201–214). https://doi.org/10.1093/acprof:osobl/9780199227341.003.0008
Dunbar, R. I. M. (2017). Group size, vocal grooming and the origins of language. Psychonomic Bulletin and Review, 24(1), 209–212. https://doi.org/10.3758/s13423- 016-1122-6
Dunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music elevates pain threshold and positive affect: Implications for the evolutionary function of music. Evolutionary Psychology, 10(4), 688–702. https://doi.org/10.1177/147470491201000403
Falk, D. (2008). Prelinguistic evolution in hominin mothers and babies: For cryin’ out loud! Behavioral and Brain Sciences, 27(4), 461–462. https://doi.org/10.1017/s0140525x04250105
Falk, J. L. (1958). The grooming behavior of the chimpanzee as a reinforcer. Journal of the Experimental Analysis of Behavior, 1(1), 83–85. https://doi.org/10.1901/jeab.1958.1-83
Fancourt, D., & Perkins, R. (2017). Associations between singing to babies and symptoms of postnatal depression, wellbeing, self-esteem and mother-infant bond. Public Health, 145, 149–152. https://doi.org/10.1016/j.puhe.2017.01.016
Feldman, R. (2012a). Bio-behavioral Synchrony: A Model for Integrating Biological and Microsocial Behavioral Processes in the Study of Parenting. Parenting, 12(2–3), 154–164. https://doi.org/10.1080/15295192.2012.683342
Feldman, R. (2012b). Oxytocin and social affiliation in humans. Hormones and Behavior, Vol. 61, pp. 380–391. https://doi.org/10.1016/j.yhbeh.2012.01.008
Feldman, R. (2016). The neurobiology of mammalian parenting and the biosocial context of human caregiving. Hormones and Behavior, 77, 3–17. https://doi.org/10.1016/j.yhbeh.2015.10.001
Feldman, R. (2017). The Neurobiology of Human Attachments. Trends in Cognitive Sciences, Vol. 21, pp. 80–99. https://doi.org/10.1016/j.tics.2016.11.007
Fernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infan
Fernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infant Preference for Motherese Speech. In Infant behavior and Development (Vol. 10).
Field, A., & Hole, G. (2002). How to design and report experiments. Sage.
Fitch, W. T. (2005). The evolution of music in comparative perspective. Annals of the New York Academy of Sciences, 1060(1), 29–49. https://doi.org/10.1196/annals.1360.004
Fitch, W. T. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100(1), 173–215. https://doi.org/10.1016/j.cognition.2005.11.009
Fitch, W. T. (2013). Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 7, 68. https://doi.org/10.3389/fnsys.2013.00068
Fitch, W. T. (2015). Four principles of bio-musicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140091. https://doi.org/10.1098/rstb.2014.0091
Fodor, J. A. (1983). The modularity of mind : an essay on faculty psychology. MIT Press
Fodor, J. A. (1985). Précis of The Modularity of Mind. Behavioral and Brain Sciences, 8(1), 1–5. https://doi.org/10.1017/S0140525X0001921X
Formann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.
Formann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.
Foxton, J. M., Nandy, R. K., & Griffiths, T. D. (2006). Rhythm deficits in ‘tone deafness.’ Brain and Cognition, 62(1), 24–29. https://doi.org/10.1016/j.bandc.2006.03.005
Friederici, A. D. (2011). The Brain Basis of Language Processing: From Structure to Function. Physiological Reviews, 91(4), 1357–1392. https://doi.org/10.1152/physrev.00006.2011
Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., … Koelsch, S. (2009). Universal Recognition of Three Basic Emotions in Music. Current Biology, 19(7), 573–576. https://doi.org/10.1016/j.cub.2009.02.058
Frost, C., Sauter, D. A., Gordon, E., Omar, R., Hailstone, J. C., Bartlett, J. W., … Scott, S. K. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56(3), 1814–1821. https://doi.org/10.1016/j.neuroimage.2011.03.002
Fukui, H. (2001). Music and Testosterone. Annals of the New York Academy of Sciences, 930(1), 448–451. https://doi.org/10.1111/j.1749-6632.2001.tb05767.x
Fundation Sing up. (2011). Synthesis Report: Sing Up 2007-2011 Programme Evaluation. Retrieved from www.singup.org
García-Casares, N., Berthier Torres, M. L., Froudist Walsh, S., & González-Santos, P. (2013). Modelo de cognición musical y amusia. Neurologia, 28(3), 179–186. https://doi.org/10.1016/j.nrl.2011.04.010
Garland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Hauser, N. D., … Noad, M. J. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21(8), 687–691. https://doi.org/10.1016/j.cub.2011.03.019
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and nonmusicians. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27- 09240.2003
Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0092
Godwin, J., & Blacking, J. (2006). How Musical Is Man? Notes, 31(1), 41. https://doi.org/10.2307/895922
Gosselin, N. (2005). Impaired recognition of scary music following unilateral temporal lobe excision. Brain, 128(3), 628–640. https://doi.org/10.1093/brain/awh420
Gosselin, N. (2006). Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain, 129(10), 2585–2592. https://doi.org/10.1093/brain/awl240
Gosselin, N., Paquette, S., & Peretz, I. (2015). Sensitivity to musical emotions in congenital amusia. Cortex, 71, 171–182. https://doi.org/10.1016/j.cortex.2015.06.022
Gosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45(2), 236–244. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2006.07.012
Grahn, J. A. (2012). Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives. Topics in Cognitive Science, 4(4), 585–606. https://doi.org/10.1111/j.1756-8765.2012.01213.x
Grahn, J. A., & Rowe, J. B. (2013). Finding and Feeling the Musical Beat: Striatal Dissociations between Detection and Prediction of Regularity. Cerebral Cortex, 23(4), 913–921. https://doi.org/10.1093/cercor/bhs083
Grebosz-Haring, K., & Thun-Hohenstein, L. (2018). Effects of group singing versus group music listening on hospitalized children and adolescents with mental disorders: A pilot study. Heliyon, 4(12), e01014. https://doi.org/10.1016/j.heliyon.2018.e01014
Grube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 45(1), 72–79. https://doi.org/10.1016/j.cortex.2008.01.006
Haesler, S. (2004). FoxP2 Expression in Avian Vocal Learners and Non-Learners. Journal of Neuroscience, 24(13), 3164–3175. https://doi.org/10.1523/JNEUROSCI.4369-03.2004
Hallam, S. (2010). The power of music: Its impact on the intellectual, social and personal development of children and young people. International Journal of Music Education, Vol. 28, pp. 269–289. https://doi.org/10.1177/0255761410370658
Hansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical 91 competence of musicians and non-musicians. Psychology of Music, 41(6), 779– 793. https://doi.org/10.1177/0305735612452186
Hasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 120. https://doi.org/10.1038/srep00120
Hattori, Y., Tomonaga, M., & Matsuzawa, T. (2013). Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports, 3. https://doi.org/10.1038/srep01566
Herdener, M., Esposito, F., di Salle, F., Boller, C., Hilti, C. C., Habermeyer, B., … Cattapan-Ludewig, K. (2010). Musical Training Induces Functional Plasticity in Human Hippocampus. Journal of Neuroscience, 30(4), 1377–1384. https://doi.org/10.1523/JNEUROSCI.4513-09.2010
Herholz, S. C., & Zatorre, R. J. (2012). Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 76(3), 486–502. https://doi.org/10.1016/j.neuron.2012.10.011
Hilliard, R. E. (2007). The effects of orff-based music therapy and social work groups on childhood grief symptoms and behaviors. Journal of Music Therapy, 44(2), 123– 138. Retrieved from http://jmt.oxfordjournals.org/
Hoelzel, A. R. (2009). Marine mammal biology : an evolutionary approach (A. R. Hoelzel, Ed.). Blackwell Science.
Hoeschele, M., Merchant, H., Kikuchi, Y., Hattori, Y., & ten Cate, C. (2015). Searching for the origins of musicality across species. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 370, pp. 20140094–20140094. https://doi.org/10.1098/rstb.2014.0094
Honing, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences, 1252(1), 85–91.
Honing, Henkjan. (2018). The origins of musicality. ILLC (FGw), Language and Computation, Brain and Cognition, ILLC (FNWI/FGw).
Honing, Henkjan, ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0088
Hopkins, M. T. (2015). Collaborative composing in high school string chamber music ensembles. Journal of Research in Music Education, 62(4), 405–424. https://doi.org/10.1177/0022429414555135
Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50(8), 1814–1822. https://doi.org/10.1016/j.neuropsychologia.2012.04.006
Hucklebridge, F., Lambert, S., Clow, A., Warburton, D. M., Evans, P. D., & Sherwood, N. (2000). Modulation of secretory immunoglobulin A in saliva; response to manipulation of mood. Biological Psychology, 53(1), 25–35. https://doi.org/10.1016/S0301-0511(00)00040-5
Huron, D. (2001). Is Music an Evolutionary Adaptation? Annals of the New York Academy of Sciences, 930(1), 43–61.
Hyde, K. L., & Peretz, I. (2004). Brains That Are out of Tune but in time. Psychological Science, 15(5), 356–360. https://doi.org/10.1111/j.0956-7976.2004.00683.x
Inoue, Y., Takahashi, T., Burriss, R. P., Arai, S., Hasegawa, T., Yamagishi, T., & Kiyonari, T. (2017). Testosterone promotes either dominance or submissiveness in the Ultimatum Game depending on players’ social rank. Scientific Reports, 7(1), 5335. https://doi.org/10.1038/s41598-017-05603-7
J. Trost, W., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, Vol. 96, pp. 96–110. https://doi.org/10.1016/j.neuropsychologia.2017.01.004
Jäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1, 78. https://doi.org/10.3410/B1-78
Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., Chen, X., & Yang, Y. (2012). Amusia Results in Abnormal Brain Activity following Inappropriate Intonation during Speech Comprehension. PLoS ONE, 7(7), e41411. https://doi.org/10.1371/journal.pone.0041411
Jiang, C., Liu, F., & Wong, P. C. M. (2017). Sensitivity to musical emotion is influenced by tonal structure in congenital amusia. Scientific Reports, 7(1), 7624. https://doi.org/10.1038/s41598-017-08005-x
Justus, T., & Hutsler, J. J. (2005). Fundamental issues in the evolutionary psychology of music:: Assessing Innateness and Domain Specificity. Music Perception, 23(1), 1– 27. https://doi.org/10.1525/mp.2005.23.1.1
Karageorghis, C. I., & Terry, P. C. (2012). Chapter 1 - The psychological, psychophysical and ergogenic effects of music in sport: A review and synthesis. In Sporting Sounds: Relationships Between Sport and Music (Vol. 1, pp. 13–36). https://doi.org/10.4324/9780203887974
Kawase, S., & Ogawa, J. (2018). Group music lessons for children aged 1–3 improve accompanying parents’ moods. Psychology of Music, 1, 11. https://doi.org/10.1177/0305735618803791
Keeler, J. R., Roth, E. A., Neuser, B. L., Spitsbergen, J. M., Waters, D. J. M., & Vianney, J.-M. (2015). The neurochemistry and social flow of singing: bonding and oxytocin. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00518
Khalfa, S., Guye, M., Peretz, I., Chapon, F., Girard, N., Chauvel, P., & Liégeois-Chauvel, C. (2008). Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia, 46(10), 2485–2493. https://doi.org/10.1016/j.neuropsychologia.2008.04.009
Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A Hierarchy of Time-Scales and the Brain. PLoS Computational Biology, 4(11), e1000209. https://doi.org/10.1371/journal.pcbi.1000209
Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314. https://doi.org/10.1016/j.jecp.2008.07.005
Kirschner Sebastian, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354–364. https://doi.org/10.1016/j.evolhumbehav.2010.04.004
Koechlin, E., & Jubault, T. (2006). Broca’s Area and the Hierarchical Organization of Human Behavior. Neuron, 50(6), 963–974. https://doi.org/10.1016/j.neuron.2006.05.017
Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131–137. https://doi.org/10.1016/j.tics.2010.01.002
Koelsch, S. (2012). Music and language. In Brain and music (p. 308). Wiley-Blackwell.
Konoike, N., Kotozaki, Y., Jeong, H., Miyazaki, A., Sakaki, K., Shinada, T., … Nakamura, K. (2015). Temporal and Motor Representation of Rhythm in FrontoParietal Cortical Areas: An fMRI Study. PLOS ONE, 10(6), e0130120. https://doi.org/10.1371/journal.pone.0130120
Krebs, J. R., & Kroodsma, D. E. (1980). Repertoires and Geographical Variation in Bird Song. Advances in the Study of Behavior, 11, 143–177. https://doi.org/10.1016/S0065-3454(08)60117-5
Kreutz, G. (2014). Does Singing Facilitate Social Bonding? Music and Medicine, 6(2), 51–60.
Kreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004). Effects of Choir Singing or Listening on Secretory Immunoglobulin A, Cortisol, and Emotional State. Journal of Behavioral Medicine, 27(6), 623–635. https://doi.org/10.1007/s10865- 004-0006-9
Kuck, H., Grossbach, M., Bangert, M., & Altenmüller, E. (2003). Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network. Annals of the New York Academy of Sciences, 999, 244–253.
Lappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical Plasticity Induced by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience, 28(39), 9632–9639. https://doi.org/10.1523/jneurosci.2254-08.2008
Large, E. W., & Gray, P. M. (2015). Supplemental Material for Spontaneous Tempo and Rhythmic Entrainment in a Bonobo (Pan paniscus). Journal of Comparative Psychology, 129(4), 317. https://doi.org/10.1037/com0000011.supp
Launay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following virtual interaction. Experimental Psychology, 60(1), 53–63. https://doi.org/10.1027/1618-3169/a000173
Lehmann, J., Korstjens, A. H., & Dunbar, R. I. M. (2007). Group size, grooming and social cohesion in primates. Animal Behaviour, 74(6), 1617–1629. https://doi.org/10.1016/j.anbehav.2006.10.025
Leongómez, J. D. (2015). La música como objeto de estudio científico: consideraciones en torno a la musicalidad y el origen de la música. (Pensamiento), (Palabra) y Obra, 96 13(13), 77–86. https://doi.org/10.17227/2011804X.15PPO77.86
Leongómez, J. D., Binter, J., Kubicová, L., Stolařová, P., Klapilová, K., Havlíček, J., & Roberts, S. C. (2014). Vocal modulation during courtship increases proceptivity even in naive listeners. Evolution and Human Behavior, 35(6), 489–496. https://doi.org/10.1016/j.evolhumbehav.2014.06.008
Lévi-Strauss, C. (1958). Anthropologie structurale. Population (French Edition), 13(3), 527–528. https://doi.org/10.2307/1525444
Lima, C. F., Brancatisano, O., Fancourt, A., Müllensiefen, D., Scott, S. K., Warren, J. D., & Stewart, L. (2016). Impaired socio-emotional processing in a developmental music disorder. Scientific Reports, 6(1), 34911. https://doi.org/10.1038/srep34911
Lolli, S. L., Lewenstein, A. D., Basurto, J., Winnik, S., & Loui, P. (2015). Sound frequency affects speech emotion perception: results from congenital amusia. Frontiers in Psychology, 6, 1340. https://doi.org/10.3389/fpsyg.2015.01340
Lortat-Jacob, B., & Bernard. (2004). Ce que chanter veut dire. L’Homme. Revue Française d’anthropologie, (171–172), 83–101. https://doi.org/10.4000/lhomme.24862
Love, T. M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacology Biochemistry and Behavior, 119, 49–60. https://doi.org/10.1016/j.pbb.2013.06.011
Lu, X., Ho, H. T., Liu, F., Wu, D., & Thompson, W. F. (2015). Intonation processing deficits of emotional words among Mandarin Chinese speakers with congenital amusia: an ERP study. Frontiers in Psychology, 6, 385. https://doi.org/10.3389/fpsyg.2015.00385
Lucas, G., Clayton, M., & Leante, L. (2017). Inter-group entrainment in Afro-Brazilian Congado ritual. Empirical Musicology Review, 6(2), 75–102. https://doi.org/10.18061/1811/51203
Ludke, K. M., Ferreira, F., & Overy, K. (2014). Singing can facilitate foreign language learning. Memory and Cognition, 42(1), 41–52. https://doi.org/10.3758/s13421-013- 0342-5
Maner, J. K. (2017). Dominance and prestige: A tale of two hierarchies. Current Directions in Psychological Science, Vol. 26, pp. 526–531. https://doi.org/10.1177/0963721417714323
Marcus, G. F. (2012). Musicality: Instinct or Acquired Skill? Topics in Cognitive Science, 4(4), 498–512. https://doi.org/10.1111/j.1756-8765.2012.01220.x
Marek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133–140.
Marin, M. M., Thompson, W. F., Gingras, B., & Stewart, L. (2015). Affective evaluation of simultaneous tone combinations in congenital amusia. Neuropsychologia, 78, 207– 220. https://doi.org/10.1016/j.neuropsychologia.2015.10.004
Marler, P. (2001). Origins of music and speech: Insights from animals. In The origins of music (pp. 31–48).
Martínez C, M. (2017). Música y movimiento en Educación Infantil (pp. 1–35). pp. 1–35. Retrieved from http://digibug.ugr.es/bitstream/handle/10481/45895/MartinezCotes_TFGMusicaMotr icidad.pdf?sequence=1
Matheson, M. D., & Bernstein, I. S. (2000). Grooming, social bonding, and agonistic aiding in rhesus monkeys. American Journal of Primatology, 51(3), 177–186. https://doi.org/10.1002/1098-2345(200007)51:3<177::AID-AJP2>3.0.CO;2-K
Mathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience, 10, 40. https://doi.org/10.3389/fnins.2016.00040
Matthews, W. K., & Kitsantas, A. (2007). Group cohesion, collective efficacy, and motivational climate as predictors of conductor support in music ensembles. Journal of Research in Music Education, 55(1), 6–17. https://doi.org/10.1177/002242940705500102
McAdams, S. (2013). Musical Timbre Perception. The Psychology of Music, 35–67. https://doi.org/10.1016/B978-0-12-381460-9.00002-X
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch? Psychological Science, 19(12), 1263–1271. https://doi.org/10.1111/j.1467- 9280.2008.02235.x
McFerran, K. S., & Wölfl, A. (2015). Music, Violence and Music Therapy with Young People in Schools: A position paper A Brief History of Music and Violence. Voices: A World Forum for Music The, 15(2). Retrieved from https://www.youtube.com/watch?v=lKpLckW
Mehr, S., Singh, M., Knox, D., Lucas, C., Ketter, D., Pickens-Jones, D., … Glowacki, L. (2018). A natural history of song. PsyArXiv Preprints.
Meister, I. G., Boroojerdi, B., Foltys, H., Sparing, R., Huber, W., & Töpper, R. (2003). Motor cortex hand area and speech: implications for the development of language. Neuropsychologia, 41(4), 401–406.
Merker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 4–17. https://doi.org/10.1016/j.cortex.2008.06.011
Miller, G. F. (2001). Evolution of Human Music through Sexual Selection. The Origins of Music, 329–360. https://doi.org/10.7551/mitpress/5190.003.0025
Miller, K. J., Foster, B. L., & Honey, C. J. (2012). Does rhythmic entrainment represent a generalized mechanism for organizing computation in the brain? Frontiers in
Mitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. A., Andrew, C. M., & Williams, S. C. R. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150–1162. https://doi.org/10.1002/hbm.20337
Morton, D., & Malm, W. P. (2006). Music Cultures of the Pacific, the Near East, and Asia. Ethnomusicology, 12(1), 140. https://doi.org/10.2307/850562
Mosing, M. A., Verweij, K. J. H., Madison, G., Pedersen, N. L., Zietsch, B. P., & Ullén, F. (2015). Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10,000 twins. Evolution and Human Behavior, 36(5), 359–366. https://doi.org/10.1016/j.evolhumbehav.2015.02.004
Müller, F. “Floyd,” Agamanolis, S., & Picard, R. (2003). Exertion interfaces: sports over a distance for social bonding and fun. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI’03, 561–568. https://doi.org/10.1145/642611.642709
Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473–478. https://doi.org/10.1038/nrn843
Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537–537. https://doi.org/10.1038/35046199
North, A. C., & Hargreaves, D. J. (1999). Music and Adolescent Identity. Music Education Research, 1(1), 75–92. https://doi.org/10.1080/1461380990010107
North, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to adolescents. British Journal of Educational Psychology, 70(2), 255–272. 100 https://doi.org/10.1348/000709900158083
Nowicki, S., & Marler, P. (1988). How do birds sing? Music Perception: An Interdisciplinary Journal, 5(4), 391–426.
Nozaradan, S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, pp. 20130393–20130393. https://doi.org/10.1098/rstb.2013.0393
Nunes Silva, M., & Geraldi Haase, V. (2013). Amusias and modularity of musical cognitive processing. Psychology and Neuroscience, 6(1), 45–56. https://doi.org/10.3922/j.psns.2013.1.08
O’Neill, C. T., Trainor, L. J., & Trehub, S. E. (2001). Infants’ Responsiveness to Fathers’ Singing. Music Perception, 18(4), 409–425. https://doi.org/10.1525/mp.2001.18.4.409
Obleser, J., & Eisner, F. (2009). Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 13(1), 14–19. https://doi.org/10.1016/j.tics.2008.09.005
Patel, A. D. (2010). Music, biological evolution, and the brain. In Vesicle.Nsi.Edu.
Patel, A. D. (2014). The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong? PLoS Biology, 12(3). https://doi.org/10.1371/journal.pbio.1001821
Pearce, E., Launay, J., Van Duijn, M., Rotkirch, A., David-Barrett, T., & Dunbar, R. I. M. (2016). Singing together or apart: The effect of competitive and cooperative singing on social bonding within and between sub-groups of a university Fraternity. Psychology of Music, 44(6), 1255–1273. https://doi.org/10.1177/0305735616636208
Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., … Koelsch, 101 S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences, 107(10), 4758–4763. https://doi.org/10.1073/pnas.0909074107
Peretz, I. (1990). Processing of local and global musical information by unilateral braindamaged patients. Brain : A Journal of Neurology, 113 ( Pt 4, 1185–1205.
Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1), 1–32. https://doi.org/10.1016/j.cognition.2005.11.004
Peretz, I. (2009). Music, Language and Modularity Framed in Action. Psychologica Belgica, 49(2–3), 157. https://doi.org/10.5334/pb-49-2-3-157
Peretz, I. (2016). Neurobiology of Congenital Amusia. Trends in Cognitive Sciences, 20(11), 857–867. https://doi.org/10.1016/j.tics.2016.09.002
Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital Amusia: A disorder of fine-grained pitch discrimination. Neuron, 33(2), 185–191. https://doi.org/10.1016/S0896-6273(01)00580-3
Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, Vol. 6, pp. 688–691. https://doi.org/10.1038/nn1083
Peretz, I., Cummings, S., & Dubé, M.-P. (2007). The Genetics of Congenital Amusia (Tone Deafness): A Family-Aggregation Study. The American Journal of Human Genetics, 81(3), 582–588. https://doi.org/10.1086/521337
Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7(8), 362–367. https://doi.org/10.1016/S1364-6613(03)00150-5
Pfeifer, J., & Hamann, S. (2018). The Nature and Nurture of Congenital Amusia: A Twin Case Study. Frontiers in Behavioral Neuroscience, 12, 120. https://doi.org/10.3389/fnbeh.2018.00120
Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception, 28(1), 3–14. https://doi.org/10.1525/mp.2010.28.1.3
Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49(5), 961–969. https://doi.org/10.1016/j.neuropsychologia.2011.02.002
Pinker, S. (1997). How the mind works (Vol. 35). W. W. Norton & Company.
Pinker, S. (1998). How the mind works. London: Penguin Books.
Pinker, S. (2007). Toward a consilient study of literature. Philosophy and Literature, 31(1), 162–178. https://doi.org/10.1353/phl.2007.0016
Porter, J., Blacking, J., & Byron, R. (2006). Music, Culture and Experience: Selected Papers of John Blacking. Western Folklore, 55(2), 163. https://doi.org/10.2307/1500182
Rabinowitch, T. C., Cross, I., & Burnard, P. (2013). Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music, 41(4), 484– 498. https://doi.org/10.1177/0305735612440609
Racette, A., Bard, C., & Peretz, I. (2006). Making non-fluent aphasics speak: Sing along! Brain, 129(10), 2571–2584. https://doi.org/10.1093/brain/awl250
Rappoport, D., & Dana. (2004). Musique et morphologie rituelle. Chez les Toraja d’Indonésie. L’Homme. Revue Française d’anthropologie, (171–172), 197–218. https://doi.org/10.4000/lhomme.24892
Rauschecker, J. P., Friederici, A. D., & Wise, R. J. S. (2012). Ventral and dorsal streams in the evolution of speech and language. https://doi.org/10.3389/fnevo.2012.00007
Rivers, J. W., & Kroodsma, D. E. (2000). Singing Behavior of the Hermit Thrush. Journal 103 of Field Ornithology, 71(3), 467–471. https://doi.org/10.1648/0273-8570-71.3.467
Rodrigues, A. C., Loureiro, M., & Caramelli, P. (2014). Visual memory in musicians and non-musicians. Frontiers in Human Neuroscience, 8, 424. https://doi.org/10.3389/fnhum.2014.00424
Rouget, G. (2004). L’efficacité musicale: musiquer pour survivre. Le cas des Pygmées. L’Homme. Revue Française d’anthropologie, (171–172), 27–52. https://doi.org/10.4000/lhomme.24855
Rouse, A. A., Cook, P. F., Large, E. W., & Reichmuth, C. (2016). Beat keeping in a sea lion as coupled oscillation: Implications for comparative understanding of human rhythm. Frontiers in Neuroscience, 10, 256. https://doi.org/10.3389/fnins.2016.00257
Saarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation. Psychology of Music, 35(1), 88–109. https://doi.org/10.1177/0305735607068889
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262. https://doi.org/10.1038/nn.2726
Salmon, S. (2012). Musica humana: Thoughts on humanistic aspects of Orff-Schulwerk. Orff Schulwerk Informationen, 87, 13–19
Sammler, D. (2018). The Melodic Mind: Neural bases of intonation in speech and music.
Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous Motor Entrainment to Music in Multiple Vocal Mimicking Species. Current Biology, 19(10), 831–836. https://doi.org/10.1016/j.cub.2009.03.061
Schaller, G. B. (1963). The mountain gorilla Chicago. Univ. Chicago Press.
Schladt, T. M., Nordmann, G. C., Emilius, R., Kudielka, B. M., de Jong, T. R., & 104 Neumann, I. D. (2017). Choir versus Solo Singing: Effects on M
Neumann, I. D. (2017). Choir versus Solo Singing: Effects on Mood, and Salivary Oxytocin and Cortisol Concentrations. Frontiers in Human Neuroscience, 11, 430. https://doi.org/10.3389/fnhum.2017.00430
Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 37–55. https://doi.org/10.1016/bs.pbr.2014.11.020
Schlaug, G., Marchina, S., & Norton, A. (2008). From Singing to Speaking: Why Singing May Lead to Recovery of Expressive Language Function in Patients with Broca’s Aphasia. Music Perception, 25(4), 315–323. https://doi.org/10.1525/MP.2008.25.4.315
Schögler, B. (1998). Music as a tool in communications research. Nordisk Tidsskrift for Musikkterapi, 7(1), 40–49. https://doi.org/10.1080/08098139809477919
Schuppert, M., Münte, T. F., Wieringa, B. M., & Altenmüller, E. (2000). Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies. Brain, 123(3), 546–559. https://doi.org/10.1093/brain/123.3.546
Seeger, A. (2017). Chanter l’identité. L’Homme. Revue Française d’anthropologie, (171– 172), 135–150. https://doi.org/10.4000/lhomme.24877
Smith, J. N., Goldizen, A. W., Dunlop, R. A., & Noad, M. J. (2008). Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Animal Behaviour, 76(2), 467–477. https://doi.org/10.1016/J.ANBEHAV.2008.02.013
Sparks, R., Helm, N., & Albert, M. (1974). Aphasia rehabilitation resulting from melodic intonation therapy. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 10(4), 303–316.
Stainsby, T., & Cross, I. (2012). The perception of pitch (Vol. 1; S. Hallam, I. Cross, & M. 105 Thaut, Eds.). https://doi.org/10.1093/oxfordhb/9780199298457.013.0005
Steinthal, H. (1881). Einleitung in die Psychologie und Sprachwissenschaft.
Sue Carter, C. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23(8), 779–818. https://doi.org/10.1016/S0306- 4530(98)00055-9
Sullivan, P., & Rickers, K. (2013). The effect of behavioral synchrony in groups of teammates and strangers. International Journal of Sport and Exercise Psychology, 11(3), 286–291. https://doi.org/10.1080/1612197X.2013.750139
Suzuki, M., Kanamori, M., Watanabe, M., Nagasawa, S., Kojima, E., Ooshiro, H., & Nakahara, D. (2004). Behavioral and endocrinological evaluation of music therapy for elderly patients with dementia. Nursing and Health Sciences, 6(1), 11–18. https://doi.org/10.1111/j.1442-2018.2003.00168.x
Talamini, F., Carretti, B., & Grassi, M. (2016). The Working Memory of Musicians and Nonmusicians. Music Perception: An Interdisciplinary Journal, 34(2), 183–191. https://doi.org/10.1525/mp.2016.34.2.183
Tattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618
Tattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618
Teramitsu, I., & White, S. A. (2006). FoxP2 Regulation during Undirected Singing in Adult Songbirds. Journal of Neuroscience, 26(28), 7390–7394. https://doi.org/10.1523/jneurosci.1662-06.2006
Theorell, T. (2014). Music in Social Cohesion. In Psychological Health Effects of Musical Experiences (pp. 17–27). https://doi.org/10.1007/978-94-017-8920-2_3
Thorpe, L. A., & Cohen, A. J. (2007). The origins of musicality. Infant Behavior and Development, 7, 363. https://doi.org/10.1016/s0163-6383(84)80425-7
Tomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121–125. https://doi.org/10.1111/j.1467-7687.2007.00573.x
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–691. https://doi.org/10.1017/S0140525X05000129
Trainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is infant-directed speech prosody a result of the vocal expression of emotion? Psychological Science, 11(3), 188–195. https://doi.org/10.1111/1467-9280.00240
Trehub, S. E. (2001). Human processing predispositions and musical universals. In The origins of music. (pp. 427–448).
Trehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience, Vol. 6, pp. 669–673. https://doi.org/10.1038/nn1084
Trehub, S. E. (2018). Human Processing Predispositions and Musical Universals. In B. M. & S. B. N. L. Wallin (Ed.), The Origins of Music (pp. 427–448). https://doi.org/10.7551/mitpress/5190.003.0030
Trehub, S. E., Plantinga, J., Brcic, J., & Nowicki, M. (2013). Cross-modal signatures in maternal speech and singing. Frontiers in Psychology, 4, 811. https://doi.org/10.3389/fpsyg.2013.00811
Tyack, P. L. (1997). Vocal learning in cetaceans. Social Influences on Vocal Development, 26, 208–233. Retrieved from http://books.google.ch/books?id=U7h3s79HcrAC
Ullén, F., Mosing, M. A., Holm, L., Eriksson, H., & Madison, G. (2014). Psychometric properties and heritability of a new online test for musicality, the Swedish Musical Discrimination Test. Personality and Individual Differences, 63, 87–93. https://doi.org/10.1016/j.paid.2014.01.057
Uozumi, T., Tamagawa, A., Hashimoto, T., & Tsuji, S. (2004). Motor hand representation in cortical area 44. Neurology, 62(5), 757–761.
Uvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23(8), 819–835. https://doi.org/10.1016/S0306-4530(98)00056-0
Valdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion. Emotion, 11(2), 262–266. https://doi.org/10.1037/a0021302
Van Puyvelde, M., Vanfleteren, P., Loots, G., Deschuyffeleer, S., Vinck, B., Jacquet, W., & Verhelst, W. (2010). Tonal synchrony in mother-infant interaction based on harmonic and pentatonic series. Infant Behavior and Development, 33(4), 387–400. https://doi.org/10.1016/j.infbeh.2010.04.003
Vernia C, A. M., Gustems C, J., & G, Calderón, C. (2016). Ritmo y procesamiento temporal. Aportaciones de Jaques-Dalcroze al lenguaje musical. Magister, 28(1), 35–41. https://doi.org/10.1016/j.magis.2016.06.003
Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The Musical Ear Test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196. https://doi.org/10.1016/j.lindif.2010.02.004
Wallin, N. L., Merker, B. H., & Brown, S. (2000). The origins of music. MIT Press.
Wan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, Vol. 16, pp. 566–577. https://doi.org/10.1177/1073858410377805
Webb, D. M., & Zhang, J. (2005). FoxP2 in song-learning birds and vocal-learning mammals. Journal of Heredity, 96(3), 212–216. https://doi.org/10.1093/jhered/esi025
Weinstein, D., Launay, J., Pearce, E., Dunbar, R. I. M., & Stewart, L. (2016). Singing and social bonding: Changes in connectivity and pain threshold as a function of group size. Evolution and Human Behavior, 37(2), 152–158. https://doi.org/10.1016/j.evolhumbehav.2015.10.002
Welch, G. F., Himonides, E., Saunders, J., Papageorgi, I., & Sarazin, M. (2014). Singing and social inclusion. Frontiers in Psychology, 5, 803. https://doi.org/10.3389/fpsyg.2014.00803
Whaling, C. (2000). What’s behind a song? The neural basis of song learning in birds. The Origins of Music, 65–76
White, S. A. (2010). Genes and vocal learning. Brain and Language, 115(1), 21–28. https://doi.org/10.1016/j.bandl.2009.10.002
Williams, D. (2004). Homologues and Homology, Phenetics and Cladistics. Systematics Association Special Volume, 67, 191–224. https://doi.org/10.1201/9780203643037.ch9
Youngerman, S. (1974). Maori Dancing since the Eighteenth Century. Ethnomusicology, 18(1), 75. https://doi.org/10.2307/850061
Zatorre, R J, & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex (New York, N.Y. : 1991), 11(10), 946–953.
Zatorre, Robert J. (1979). Recognition of dichotic melodies by musicians and nonmusicians. Neuropsychologia, 17(6), 607–617. https://doi.org/10.1016/0028- 3932(79)90035-6
Zhishuai, J., Hong, L., Daxing, W., Pin, Z., & Xuejing, L. (2017). Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study. NeuroImage: Clinical, 14, 602–609. https://doi.org/10.1016/J.NICL.2017.02.024
Zimmerman, E., & Maron, J. L. (2016). FOXP2 gene deletion and infant feeding difficulties: a case report. Molecular Case Studies, 2(1), a000547. https://doi.org/10.1101/mcs.a000547
dc.relation.references.none.fl_str_mv Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic contour and speech intonation in congenital amusics with Mandarin Chinese. Neuropsychologia, 48(9), 2630–2639. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.05.009
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access.spa.fl_str_mv Acceso abierto
dc.rights.creativecommons.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
Attribution-NonCommercial-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.spa.fl_str_mv PDF
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Pedagógica Nacional
dc.publisher.program.spa.fl_str_mv Licenciatura en Música
dc.publisher.faculty.spa.fl_str_mv Facultad de Bellas Artes
dc.source.spa.fl_str_mv reponame:Repositorio Institucional de la Universidad Pedagógica Nacional
instname:Universidad Pedagógica Nacional
instname_str Universidad Pedagógica Nacional
institution Universidad Pedagógica Nacional
reponame_str Repositorio Institucional de la Universidad Pedagógica Nacional
collection Repositorio Institucional de la Universidad Pedagógica Nacional
bitstream.url.fl_str_mv http://repository.pedagogica.edu.co/bitstream/20.500.12209/10443/3/TE-20249.pdf.jpg
http://repository.pedagogica.edu.co/bitstream/20.500.12209/10443/2/license.txt
http://repository.pedagogica.edu.co/bitstream/20.500.12209/10443/1/TE-20249.pdf
bitstream.checksum.fl_str_mv ea30df14e2207c43094519d4db5012f0
8a4605be74aa9ea9d79846c1fba20a33
21746792c6a3786208a52fd25d495393
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Pedagógica Nacional
repository.mail.fl_str_mv repositorio@pedagogica.edu.co
_version_ 1814445027407953920
spelling Leongómez Peña, Juan DavidMoreno Buitrago, Natalia ElízabethPérez Ariza, Juan Felipe2019-09-23T15:56:31Z2019-09-23T15:56:31Z2019http://hdl.handle.net/20.500.12209/10443instname:Universidad Pedagógica Nacionalinstname:Universidad Pedagógica Nacionalreponame: Repositorio Institucional UPNrepourl: http://repositorio.pedagogica.edu.co/Los maestros de música generalmente afirman que, según su experiencia, la música beneficia de diversas maneras a los estudiantes. En esta investigación evaluamos la afirmación que apunta a que la música lleva a los estudiantes a trabajar mejor en equipo. 15 grupos de 5 personas, cada uno conformado por hombres y mujeres desconocidos entre sí, y de edades entre los 18 y 28 años de diferentes universidades de Bogotá, fueron asignados a tres condiciones: rítmica, ritmomelódica y control. Cada grupo debía componer o improvisar algo que los representara grupalmente: En la condición rítmica, los participantes debían componer o improvisar un ritmo entre los cinco e interpretarlo; en la condición ritmomelódica, los participantes debían componer una canción o cantar alguna existente que los representara; y finalmente, en el control, los participantes debían crear una frase o un slogan que no tuviera ningún tipo de rasgo musical. Acto seguido, cada grupo debía trabajar en equipo para completar dos actividades. En primer lugar, debían desenredar cinco cuerdas anudadas de manera estándar siguiendo unas reglas específicas. Luego de desenredarlas, debían armar un rompecabezas entre los cinco, para lo cual, dos integrantes del grupo debían vendarse los ojos y manipular las fichas, mientras que los tres restantes daban las instrucciones en un orden específico. El tiempo de ejecución era cronometrado desde que empezaban a desenredar las cuerdas hasta que ponían la última ficha del rompecabezas. Los datos fueron analizados realizando un análisis de covarianza, comparando el promedio del tiempo de ejecución de cada condición y controlando tres covariables: I) el promedio grupal del resultado de la prueba de musicalidad y el promedio grupal de los índices psicométricos de II) dominancia y III) prestigio. Los resultados no permiten inferir con suficiente certeza una relación entre las condiciones experimentales y el tiempo de ejecución de las pruebas de trabajo grupal (p = 0.797). Las implicaciones de estos resultados fueron analizados a la luz de una revisión bibliográfica en la que indagamos sobre las diferentes hipótesis que le aportan a la música un valor evolutivo.Submitted by Maria Emilia ROJAS PINZÓN (merojas@pedagogica.edu.co) on 2019-09-23T15:56:14Z No. of bitstreams: 1 TE-20249.pdf: 1165472 bytes, checksum: 21746792c6a3786208a52fd25d495393 (MD5)Approved for entry into archive by Maria Emilia ROJAS PINZÓN (merojas@pedagogica.edu.co) on 2019-09-23T15:56:31Z (GMT) No. of bitstreams: 1 TE-20249.pdf: 1165472 bytes, checksum: 21746792c6a3786208a52fd25d495393 (MD5)Made available in DSpace on 2019-09-23T15:56:31Z (GMT). No. of bitstreams: 1 TE-20249.pdf: 1165472 bytes, checksum: 21746792c6a3786208a52fd25d495393 (MD5)Licenciado en MúsicaTesis de pregradoMusic teachers often affirm that, according to their experience, music benefits students in several ways. On this research we evaluate the hypothesis of making music promoting teamwork. 15 groups of five people, each of them composed of unknown men and women, from ages ranging from 18 to 28 years old and from different universities from Bogotá, were assigned to three different conditions: rhythmic, melodic - rhythm and control. Each group had to compose or improvise something to represent them: For rhythmic condition, participants had to compose or improvise a rhythm and interpret it together; on melodic rhythm condition, participants had to compose a song or sing an existing one to represent them; and control group had to create a sentence or slogan that didn't have any music like component. Afterwards, each group had to work together to complete two activities. First, they had to unwrap five ropes tied together in a standard way and following specific instructions. When the ropes were unwrapped, the group had to resolve a 15 pieces puzzle, in which two of the participants had their eyes covered and manipulated the pieces, while the other three gave the instructions, in a specific order, to put the pieces together. Time of completion was measured from the moment they started unwrapping the ropes until the las piece of the puzzle was correctly put together. Data was analyzed by performing an ANCOVA, comparing means of time of completion in each condition and controlling for three covariables: I) the mean of the group on a musicality test and the mean of the group on II) Dominance – III) Prestige scale. The results did not allow us to infer strongly enough a relation between conditions and the completion time on the group work activities (p = 0.797). Implications of these results were analyzed according to a literature review on which we examine different hypothesis which provide music with an evolutive valuePDFapplication/pdfspaUniversidad Pedagógica NacionalLicenciatura en MúsicaFacultad de Bellas Arteshttps://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional de la Universidad Pedagógica Nacionalinstname:Universidad Pedagógica NacionalMúsica y sociedadMusicalidad,Cohesión socialTrabajo en equipoNiños - MúsicaEvoluciónPedagogía y cogniciónMusicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.info:eu-repo/semantics/bachelorThesisTesis/Trabajo de grado - Monografía – Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAgustus, J. L., Mahoney, C. J., Downey, L. E., Omar, R., Cohen, M., White, M. J., … Warren, J. D. (2015). Functional MRI of music emotion processing in frontotemporal dementia. Annals of the New York Academy of Sciences, 1337(1), 232–240. https://doi.org/10.1111/nyas.12620Aiello, L. C., & Dunbar, R. I. M. (1993). Neocortex Size, Group Size, and the Evolution of Language. Current Anthropology, 34(2), 184–193. https://doi.org/10.2307/2743982Albert, M. L., Sparks, R. W., & Helm, N. A. (1973). Melodic intonation therapy for aphasia. Archives of Neurology, 29(2), 130–131.Altenmüller, E., & Furuya, S. (2017). Apollos Gift and Curse: Making Music as a model for Adaptive and Maladaptive Plasticity. E-Neuroforum, 23(2). https://doi.org/10.1515/nf-2016-A054Amaducci, L., Grassi, E., & Boller, F. (2002). Maurice Ravel and right-hemisphere musical creativity: Influence of disease on his last musical works? European Journal of Neurology, 9(1), 75–82. https://doi.org/10.1046/j.1468-1331.2002.00351.xAslan, U. (2017). Negotiating biological and cultural features of music: Towards the field of biomusicology. Rupkatha Journal on Interdisciplinary Studies in Humanities, 9(1), 2–10. https://doi.org/10.21659/rupkatha.v9n1.02Atzil, S., Hendler, T., & Feldman, R. (2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36(13), 2603–2615. https://doi.org/10.1038/npp.2011.172Au, W. W. L., Pack, A. A., Lammers, M. O., Herman, L. M., Deakos, M. H., & Andrews, K. (2006). Acoustic properties of humpback whale songs. The Journal of the Acoustical Society of America, 120(2), 1103–1110. https://doi.org/10.1121/1.2211547Axelrod, R., & Dion, D. (1988). The further evolution of cooperation. Science, 242(4884), 1385–1390. https://doi.org/10.1126/science.242.4884.1385Bannan, N. (2017). Darwin, music and evolution: New insights from family correspondence on The Descent of Man. Musicae Scientiae, 21(1), 3–25. https://doi.org/10.1177/1029864916631794Baumgartner, T., Lutz, K., Schmidt, C. F., & Jäncke, L. (2006). The emotional power of music: How music enhances the feeling of affective pictures. Brain Research, 1075(1), 151–164. https://doi.org/10.1016/j.brainres.2005.12.065Behague, G., & Seeger, A. (2006). Why Suya Sing. A Musical Anthropology of an Amazonian People. Latin American Music Review / Revista de Música Latinoamericana, 9(2), 260. https://doi.org/10.2307/780298Bellinger, D., Altenmüller, E., & Volkmann, J. (2017). Perception of Time in Music in Patients with Parkinson’s Disease–The Processing of Musical Syntax Compensates for Rhythmic Deficits. Frontiers in Neuroscience, 11, 68. https://doi.org/10.3389/fnins.2017.00068Bengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E., … Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62–71. https://doi.org/10.1016/j.cortex.2008.07.002Benton, A. L. (1977). The Amusias. Music and the Brain, 378–397. https://doi.org/10.1016/B978-0-433-06703-0.50029-2Berwick, R. C., Beckers, G. J. L., Okanoya, K., & Bolhuis, J. J. (2012). A bird’s eye view of human language evolution. Frontiers in Evolutionary Neuroscience, 4, 5. https://doi.org/10.3389/fnevo.2012.00005Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.Boughman, J. W., & Moss, C. F. (2003). Social Sounds: Vocal Learning and Development of Mammal and Bird Calls. In Acoustic Communication (pp. 138–224). https://doi.org/10.1007/0-387-22762-8_4Brainsky, Simón and Guzmán Cervantes, Eugenia and Matallana, Diana and Montaña, Clemencia and Montañés, Patricia and Morales, Hernando and Moreno Cardozo, Belén del Rocío and Morillo, Anibal and Pardo, Rodrigo and Rojas, Alejandro and Ruiz, E. (2010). Cerebro y música. In Cerebro, Arte y Creatividad. https://doi.org/10.1196Brandily, M. (2004). Dire ou chanter? L’exemple du Tibesti (Tchad). L’Homme. Revue Française d’anthropologie, (171–172), 303–311. https://doi.org/10.4000/lhomme.24924Brandler, S., & Rammsayer, T. H. (2003). Differences in mental abilities between musicians and non-musicians. Psychology of Music, 31(2), 123–138. https://doi.org/10.1177/0305735603031002290Brown, S., & Jordania, J. (2013). Universals in the world’s musics. Psychology of Music, 41(2), 229–248. https://doi.org/10.1177/0305735611425896Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport, 15(13), 2033– 2037.Brufal A, J. D. (2013). Los principales métodos activos de educación musical en primaria. In Arseduca. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=4339750Brust, J. C. (2001). Music and the neurologist. A historical perspective. Annals of the New York Academy of Sciences, 930, 143–152.Buckner, M., & Margaret. (2004). Ce que nous dit la cloche manjako. L’Homme. Revue Française d’anthropologie, (171–172), 219–230. https://doi.org/10.4000/lhomme.24896Cacioppo, J. T., Cacioppo, S., Capitanio, J. P., & Cole, S. W. (2015). The Neuroendocrinology of Social Isolation. In Annual Review of Psychology (Vol. 66). https://doi.org/10.1146/annurev-psych-010814-015240Callan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H., & Turner, R. (2006). Song and speech: Brain regions involved with perception and covert production. NeuroImage, 31(3), 1327–1342. https://doi.org/10.1016/j.neuroimage.2006.01.036Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17(1), 37–50. https://doi.org/10.1207/s15326934crj1701_4Casudan, E. (1995). Hormones, sex, and status in women. Hormones and Behavior, 29(3), 354–366. https://doi.org/10.1006/hbeh.1995.1025Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to Musical Rhythms Recruits Motor Regions of the Brain. Cerebral Cortex, 18(12), 2844–2854. https://doi.org/10.1093/cercor/bhn042Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32(4), 1771–1781. https://doi.org/10.1016/j.neuroimage.2006.04.207Cheng, J. T., Tracy, J. L., & Henrich, J. (2010). Pride, personality, and the evolutionary foundations of human social status. Evolution and Human Behavior, 31(5), 334– 347. https://doi.org/10.1016/j.evolhumbehav.2010.02.004Chobert, J., & Besson, M. (2013). Musical expertise and second language learning. Brain Sciences, Vol. 3, pp. 923–940. https://doi.org/10.3390/brainsci3020923Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 1003–1011. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25513669Clark, C. W., & Clapham, P. J. (2004). Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proceedings of the Royal Society B: Biological Sciences, 271(1543), 1051–1057. https://doi.org/10.1098/rspb.2004.2699Clarke, E., DeNora, T., & Vuoskoski, J. (2015). Music, empathy and cultural understanding. Physics of Life Reviews, 15, 61–88. https://doi.org/10.1016/j.plrev.2015.09.001Clayton, M. (2012). What is Entrainment? Definition and applications in musical research. Empirical Musicology Review, 7(1–2), 49–56. https://doi.org/10.18061/1811/52979Clayton, M., Sager, R., & Udo, W. (2005). In time with the music : the concept of entrainment and its signicance for ethnomusicology. In European meetings in ethnomusicology (Vol. 11, pp. 1–82). Retrieved from http://dro.dur.ac.uk/8713/1/8713.pdfConard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737–740. https://doi.org/10.1038/nature08169Črnčec, R., Wilson, S. J., & Prior, M. (2006). The cognitive and academic benefits of music to children: Facts and fiction. Educational Psychology, 26(4), 579–594. https://doi.org/10.1080/01443410500342542Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 28–42.Cross, I. (2016). The Nature of Music and Its Evolution The Theory of Evolution in 85 Musicological. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford Handbooks Online. (pp. 1–20). https://doi.org/10.1093/oxfordhb/9780198722946.013.5Cross, I., & Morley, I. (2008). The evolution of music: theories, definitions and the nature of the evidence. In Communicative musicality: Exploring the basis of human companionship (pp. 61–82). Retrieved from http://www.mus.cam.ac.uk/~ic108/PDF/CM_CM08.pdfCrowley, D. J., & Seeger, A. (2006). Nature and Society in Central Brazil: The Suya Indians of Mato Grosso. Ethnomusicology, 27(3), 539. https://doi.org/10.2307/850658Dalla Bella, S. (2016). Music and Brain Plasticity. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford Handbook of Music Psychology (2nd ed., pp. 325–342). https://doi.org/10.1093/oxfordhb/9780198722946.013.23Dalla Bella, S., Deutsch, D., Giguère, J.-F., Peretz, I., & Deutsch, D. (2007). Singing proficiency in the general population. The Journal of the Acoustical Society of America, 121(2), 1182–1189. https://doi.org/10.1121/1.2427111Darwin, C. (1871). The descent of man, and Selection in relation to sex, Vol 1. https://doi.org/10.1037/12293-000Delsing, M. J. M. H., Ter Bogt, T. F. M., Engels, R. C. M. E., & Meeus, W. H. J. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality, 22(2), 109–130. https://doi.org/10.1002/per.665Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, Vol. 28, pp. 313–350. https://doi.org/10.1017/S0140525X05000063Di Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia, 42(7), 868–877.Dissanayake, E. (2009). Root, leaf, blossom, or bole: Concerning the origin and adaptive function of music. In S. Malloch & C. Trevarten (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 17–30). Oxford University Press.Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10(7), 915–921. https://doi.org/10.1038/nn1925Drake, C., & El Heni, J. Ben. (2003). Synchronizing with Music: Intercultural Differences. Annals of the New York Academy of Sciences, 999(1), 429–437. https://doi.org/10.1196/annals.1284.053Dufour, V., Pasquaretta, C., Gayet, P., & Sterck, E. H. M. (2017). The extraordinary nature of Barney’s drumming: A complementary study of ordinary noise making in chimpanzees. Frontiers in Neuroscience, 11, 2. https://doi.org/10.3389/fnins.2017.00002Dunbar, R. I. M. (1991). Functional Significance of Social Grooming in Primates. Folia Primatologica, 57(3), 121–131. https://doi.org/10.1159/000156574Dunbar, R. I. M. (2012). On the Evolutionary Function of Song and Dance. In Music, Language, and Human Evolution (pp. 201–214). https://doi.org/10.1093/acprof:osobl/9780199227341.003.0008Dunbar, R. I. M. (2017). Group size, vocal grooming and the origins of language. Psychonomic Bulletin and Review, 24(1), 209–212. https://doi.org/10.3758/s13423- 016-1122-6Dunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music elevates pain threshold and positive affect: Implications for the evolutionary function of music. Evolutionary Psychology, 10(4), 688–702. https://doi.org/10.1177/147470491201000403Falk, D. (2008). Prelinguistic evolution in hominin mothers and babies: For cryin’ out loud! Behavioral and Brain Sciences, 27(4), 461–462. https://doi.org/10.1017/s0140525x04250105Falk, J. L. (1958). The grooming behavior of the chimpanzee as a reinforcer. Journal of the Experimental Analysis of Behavior, 1(1), 83–85. https://doi.org/10.1901/jeab.1958.1-83Fancourt, D., & Perkins, R. (2017). Associations between singing to babies and symptoms of postnatal depression, wellbeing, self-esteem and mother-infant bond. Public Health, 145, 149–152. https://doi.org/10.1016/j.puhe.2017.01.016Feldman, R. (2012a). Bio-behavioral Synchrony: A Model for Integrating Biological and Microsocial Behavioral Processes in the Study of Parenting. Parenting, 12(2–3), 154–164. https://doi.org/10.1080/15295192.2012.683342Feldman, R. (2012b). Oxytocin and social affiliation in humans. Hormones and Behavior, Vol. 61, pp. 380–391. https://doi.org/10.1016/j.yhbeh.2012.01.008Feldman, R. (2016). The neurobiology of mammalian parenting and the biosocial context of human caregiving. Hormones and Behavior, 77, 3–17. https://doi.org/10.1016/j.yhbeh.2015.10.001Feldman, R. (2017). The Neurobiology of Human Attachments. Trends in Cognitive Sciences, Vol. 21, pp. 80–99. https://doi.org/10.1016/j.tics.2016.11.007Fernald, A., & Kuhl, P. (1987). Acoustic Determinants of InfanFernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infant Preference for Motherese Speech. In Infant behavior and Development (Vol. 10).Field, A., & Hole, G. (2002). How to design and report experiments. Sage.Fitch, W. T. (2005). The evolution of music in comparative perspective. Annals of the New York Academy of Sciences, 1060(1), 29–49. https://doi.org/10.1196/annals.1360.004Fitch, W. T. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100(1), 173–215. https://doi.org/10.1016/j.cognition.2005.11.009Fitch, W. T. (2013). Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 7, 68. https://doi.org/10.3389/fnsys.2013.00068Fitch, W. T. (2015). Four principles of bio-musicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140091. https://doi.org/10.1098/rstb.2014.0091Fodor, J. A. (1983). The modularity of mind : an essay on faculty psychology. MIT PressFodor, J. A. (1985). Précis of The Modularity of Mind. Behavioral and Brain Sciences, 8(1), 1–5. https://doi.org/10.1017/S0140525X0001921XFormann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.Formann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.Foxton, J. M., Nandy, R. K., & Griffiths, T. D. (2006). Rhythm deficits in ‘tone deafness.’ Brain and Cognition, 62(1), 24–29. https://doi.org/10.1016/j.bandc.2006.03.005Friederici, A. D. (2011). The Brain Basis of Language Processing: From Structure to Function. Physiological Reviews, 91(4), 1357–1392. https://doi.org/10.1152/physrev.00006.2011Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., … Koelsch, S. (2009). Universal Recognition of Three Basic Emotions in Music. Current Biology, 19(7), 573–576. https://doi.org/10.1016/j.cub.2009.02.058Frost, C., Sauter, D. A., Gordon, E., Omar, R., Hailstone, J. C., Bartlett, J. W., … Scott, S. K. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56(3), 1814–1821. https://doi.org/10.1016/j.neuroimage.2011.03.002Fukui, H. (2001). Music and Testosterone. Annals of the New York Academy of Sciences, 930(1), 448–451. https://doi.org/10.1111/j.1749-6632.2001.tb05767.xFundation Sing up. (2011). Synthesis Report: Sing Up 2007-2011 Programme Evaluation. Retrieved from www.singup.orgGarcía-Casares, N., Berthier Torres, M. L., Froudist Walsh, S., & González-Santos, P. (2013). Modelo de cognición musical y amusia. Neurologia, 28(3), 179–186. https://doi.org/10.1016/j.nrl.2011.04.010Garland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Hauser, N. D., … Noad, M. J. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21(8), 687–691. https://doi.org/10.1016/j.cub.2011.03.019Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and nonmusicians. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27- 09240.2003Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0092Godwin, J., & Blacking, J. (2006). How Musical Is Man? Notes, 31(1), 41. https://doi.org/10.2307/895922Gosselin, N. (2005). Impaired recognition of scary music following unilateral temporal lobe excision. Brain, 128(3), 628–640. https://doi.org/10.1093/brain/awh420Gosselin, N. (2006). Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain, 129(10), 2585–2592. https://doi.org/10.1093/brain/awl240Gosselin, N., Paquette, S., & Peretz, I. (2015). Sensitivity to musical emotions in congenital amusia. Cortex, 71, 171–182. https://doi.org/10.1016/j.cortex.2015.06.022Gosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45(2), 236–244. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2006.07.012Grahn, J. A. (2012). Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives. Topics in Cognitive Science, 4(4), 585–606. https://doi.org/10.1111/j.1756-8765.2012.01213.xGrahn, J. A., & Rowe, J. B. (2013). Finding and Feeling the Musical Beat: Striatal Dissociations between Detection and Prediction of Regularity. Cerebral Cortex, 23(4), 913–921. https://doi.org/10.1093/cercor/bhs083Grebosz-Haring, K., & Thun-Hohenstein, L. (2018). Effects of group singing versus group music listening on hospitalized children and adolescents with mental disorders: A pilot study. Heliyon, 4(12), e01014. https://doi.org/10.1016/j.heliyon.2018.e01014Grube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 45(1), 72–79. https://doi.org/10.1016/j.cortex.2008.01.006Haesler, S. (2004). FoxP2 Expression in Avian Vocal Learners and Non-Learners. Journal of Neuroscience, 24(13), 3164–3175. https://doi.org/10.1523/JNEUROSCI.4369-03.2004Hallam, S. (2010). The power of music: Its impact on the intellectual, social and personal development of children and young people. International Journal of Music Education, Vol. 28, pp. 269–289. https://doi.org/10.1177/0255761410370658Hansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical 91 competence of musicians and non-musicians. Psychology of Music, 41(6), 779– 793. https://doi.org/10.1177/0305735612452186Hasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 120. https://doi.org/10.1038/srep00120Hattori, Y., Tomonaga, M., & Matsuzawa, T. (2013). Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports, 3. https://doi.org/10.1038/srep01566Herdener, M., Esposito, F., di Salle, F., Boller, C., Hilti, C. C., Habermeyer, B., … Cattapan-Ludewig, K. (2010). Musical Training Induces Functional Plasticity in Human Hippocampus. Journal of Neuroscience, 30(4), 1377–1384. https://doi.org/10.1523/JNEUROSCI.4513-09.2010Herholz, S. C., & Zatorre, R. J. (2012). Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 76(3), 486–502. https://doi.org/10.1016/j.neuron.2012.10.011Hilliard, R. E. (2007). The effects of orff-based music therapy and social work groups on childhood grief symptoms and behaviors. Journal of Music Therapy, 44(2), 123– 138. Retrieved from http://jmt.oxfordjournals.org/Hoelzel, A. R. (2009). Marine mammal biology : an evolutionary approach (A. R. Hoelzel, Ed.). Blackwell Science.Hoeschele, M., Merchant, H., Kikuchi, Y., Hattori, Y., & ten Cate, C. (2015). Searching for the origins of musicality across species. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 370, pp. 20140094–20140094. https://doi.org/10.1098/rstb.2014.0094Honing, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences, 1252(1), 85–91.Honing, Henkjan. (2018). The origins of musicality. ILLC (FGw), Language and Computation, Brain and Cognition, ILLC (FNWI/FGw).Honing, Henkjan, ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0088Hopkins, M. T. (2015). Collaborative composing in high school string chamber music ensembles. Journal of Research in Music Education, 62(4), 405–424. https://doi.org/10.1177/0022429414555135Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50(8), 1814–1822. https://doi.org/10.1016/j.neuropsychologia.2012.04.006Hucklebridge, F., Lambert, S., Clow, A., Warburton, D. M., Evans, P. D., & Sherwood, N. (2000). Modulation of secretory immunoglobulin A in saliva; response to manipulation of mood. Biological Psychology, 53(1), 25–35. https://doi.org/10.1016/S0301-0511(00)00040-5Huron, D. (2001). Is Music an Evolutionary Adaptation? Annals of the New York Academy of Sciences, 930(1), 43–61.Hyde, K. L., & Peretz, I. (2004). Brains That Are out of Tune but in time. Psychological Science, 15(5), 356–360. https://doi.org/10.1111/j.0956-7976.2004.00683.xInoue, Y., Takahashi, T., Burriss, R. P., Arai, S., Hasegawa, T., Yamagishi, T., & Kiyonari, T. (2017). Testosterone promotes either dominance or submissiveness in the Ultimatum Game depending on players’ social rank. Scientific Reports, 7(1), 5335. https://doi.org/10.1038/s41598-017-05603-7J. Trost, W., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, Vol. 96, pp. 96–110. https://doi.org/10.1016/j.neuropsychologia.2017.01.004Jäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1, 78. https://doi.org/10.3410/B1-78Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., Chen, X., & Yang, Y. (2012). Amusia Results in Abnormal Brain Activity following Inappropriate Intonation during Speech Comprehension. PLoS ONE, 7(7), e41411. https://doi.org/10.1371/journal.pone.0041411Jiang, C., Liu, F., & Wong, P. C. M. (2017). Sensitivity to musical emotion is influenced by tonal structure in congenital amusia. Scientific Reports, 7(1), 7624. https://doi.org/10.1038/s41598-017-08005-xJustus, T., & Hutsler, J. J. (2005). Fundamental issues in the evolutionary psychology of music:: Assessing Innateness and Domain Specificity. Music Perception, 23(1), 1– 27. https://doi.org/10.1525/mp.2005.23.1.1Karageorghis, C. I., & Terry, P. C. (2012). Chapter 1 - The psychological, psychophysical and ergogenic effects of music in sport: A review and synthesis. In Sporting Sounds: Relationships Between Sport and Music (Vol. 1, pp. 13–36). https://doi.org/10.4324/9780203887974Kawase, S., & Ogawa, J. (2018). Group music lessons for children aged 1–3 improve accompanying parents’ moods. Psychology of Music, 1, 11. https://doi.org/10.1177/0305735618803791Keeler, J. R., Roth, E. A., Neuser, B. L., Spitsbergen, J. M., Waters, D. J. M., & Vianney, J.-M. (2015). The neurochemistry and social flow of singing: bonding and oxytocin. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00518Khalfa, S., Guye, M., Peretz, I., Chapon, F., Girard, N., Chauvel, P., & Liégeois-Chauvel, C. (2008). Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia, 46(10), 2485–2493. https://doi.org/10.1016/j.neuropsychologia.2008.04.009Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A Hierarchy of Time-Scales and the Brain. PLoS Computational Biology, 4(11), e1000209. https://doi.org/10.1371/journal.pcbi.1000209Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314. https://doi.org/10.1016/j.jecp.2008.07.005Kirschner Sebastian, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354–364. https://doi.org/10.1016/j.evolhumbehav.2010.04.004Koechlin, E., & Jubault, T. (2006). Broca’s Area and the Hierarchical Organization of Human Behavior. Neuron, 50(6), 963–974. https://doi.org/10.1016/j.neuron.2006.05.017Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131–137. https://doi.org/10.1016/j.tics.2010.01.002Koelsch, S. (2012). Music and language. In Brain and music (p. 308). Wiley-Blackwell.Konoike, N., Kotozaki, Y., Jeong, H., Miyazaki, A., Sakaki, K., Shinada, T., … Nakamura, K. (2015). Temporal and Motor Representation of Rhythm in FrontoParietal Cortical Areas: An fMRI Study. PLOS ONE, 10(6), e0130120. https://doi.org/10.1371/journal.pone.0130120Krebs, J. R., & Kroodsma, D. E. (1980). Repertoires and Geographical Variation in Bird Song. Advances in the Study of Behavior, 11, 143–177. https://doi.org/10.1016/S0065-3454(08)60117-5Kreutz, G. (2014). Does Singing Facilitate Social Bonding? Music and Medicine, 6(2), 51–60.Kreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004). Effects of Choir Singing or Listening on Secretory Immunoglobulin A, Cortisol, and Emotional State. Journal of Behavioral Medicine, 27(6), 623–635. https://doi.org/10.1007/s10865- 004-0006-9Kuck, H., Grossbach, M., Bangert, M., & Altenmüller, E. (2003). Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network. Annals of the New York Academy of Sciences, 999, 244–253.Lappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical Plasticity Induced by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience, 28(39), 9632–9639. https://doi.org/10.1523/jneurosci.2254-08.2008Large, E. W., & Gray, P. M. (2015). Supplemental Material for Spontaneous Tempo and Rhythmic Entrainment in a Bonobo (Pan paniscus). Journal of Comparative Psychology, 129(4), 317. https://doi.org/10.1037/com0000011.suppLaunay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following virtual interaction. Experimental Psychology, 60(1), 53–63. https://doi.org/10.1027/1618-3169/a000173Lehmann, J., Korstjens, A. H., & Dunbar, R. I. M. (2007). Group size, grooming and social cohesion in primates. Animal Behaviour, 74(6), 1617–1629. https://doi.org/10.1016/j.anbehav.2006.10.025Leongómez, J. D. (2015). La música como objeto de estudio científico: consideraciones en torno a la musicalidad y el origen de la música. (Pensamiento), (Palabra) y Obra, 96 13(13), 77–86. https://doi.org/10.17227/2011804X.15PPO77.86Leongómez, J. D., Binter, J., Kubicová, L., Stolařová, P., Klapilová, K., Havlíček, J., & Roberts, S. C. (2014). Vocal modulation during courtship increases proceptivity even in naive listeners. Evolution and Human Behavior, 35(6), 489–496. https://doi.org/10.1016/j.evolhumbehav.2014.06.008Lévi-Strauss, C. (1958). Anthropologie structurale. Population (French Edition), 13(3), 527–528. https://doi.org/10.2307/1525444Lima, C. F., Brancatisano, O., Fancourt, A., Müllensiefen, D., Scott, S. K., Warren, J. D., & Stewart, L. (2016). Impaired socio-emotional processing in a developmental music disorder. Scientific Reports, 6(1), 34911. https://doi.org/10.1038/srep34911Lolli, S. L., Lewenstein, A. D., Basurto, J., Winnik, S., & Loui, P. (2015). Sound frequency affects speech emotion perception: results from congenital amusia. Frontiers in Psychology, 6, 1340. https://doi.org/10.3389/fpsyg.2015.01340Lortat-Jacob, B., & Bernard. (2004). Ce que chanter veut dire. L’Homme. Revue Française d’anthropologie, (171–172), 83–101. https://doi.org/10.4000/lhomme.24862Love, T. M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacology Biochemistry and Behavior, 119, 49–60. https://doi.org/10.1016/j.pbb.2013.06.011Lu, X., Ho, H. T., Liu, F., Wu, D., & Thompson, W. F. (2015). Intonation processing deficits of emotional words among Mandarin Chinese speakers with congenital amusia: an ERP study. Frontiers in Psychology, 6, 385. https://doi.org/10.3389/fpsyg.2015.00385Lucas, G., Clayton, M., & Leante, L. (2017). Inter-group entrainment in Afro-Brazilian Congado ritual. Empirical Musicology Review, 6(2), 75–102. https://doi.org/10.18061/1811/51203Ludke, K. M., Ferreira, F., & Overy, K. (2014). Singing can facilitate foreign language learning. Memory and Cognition, 42(1), 41–52. https://doi.org/10.3758/s13421-013- 0342-5Maner, J. K. (2017). Dominance and prestige: A tale of two hierarchies. Current Directions in Psychological Science, Vol. 26, pp. 526–531. https://doi.org/10.1177/0963721417714323Marcus, G. F. (2012). Musicality: Instinct or Acquired Skill? Topics in Cognitive Science, 4(4), 498–512. https://doi.org/10.1111/j.1756-8765.2012.01220.xMarek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133–140.Marin, M. M., Thompson, W. F., Gingras, B., & Stewart, L. (2015). Affective evaluation of simultaneous tone combinations in congenital amusia. Neuropsychologia, 78, 207– 220. https://doi.org/10.1016/j.neuropsychologia.2015.10.004Marler, P. (2001). Origins of music and speech: Insights from animals. In The origins of music (pp. 31–48).Martínez C, M. (2017). Música y movimiento en Educación Infantil (pp. 1–35). pp. 1–35. Retrieved from http://digibug.ugr.es/bitstream/handle/10481/45895/MartinezCotes_TFGMusicaMotr icidad.pdf?sequence=1Matheson, M. D., & Bernstein, I. S. (2000). Grooming, social bonding, and agonistic aiding in rhesus monkeys. American Journal of Primatology, 51(3), 177–186. https://doi.org/10.1002/1098-2345(200007)51:3<177::AID-AJP2>3.0.CO;2-KMathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience, 10, 40. https://doi.org/10.3389/fnins.2016.00040Matthews, W. K., & Kitsantas, A. (2007). Group cohesion, collective efficacy, and motivational climate as predictors of conductor support in music ensembles. Journal of Research in Music Education, 55(1), 6–17. https://doi.org/10.1177/002242940705500102McAdams, S. (2013). Musical Timbre Perception. The Psychology of Music, 35–67. https://doi.org/10.1016/B978-0-12-381460-9.00002-XMcDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch? Psychological Science, 19(12), 1263–1271. https://doi.org/10.1111/j.1467- 9280.2008.02235.xMcFerran, K. S., & Wölfl, A. (2015). Music, Violence and Music Therapy with Young People in Schools: A position paper A Brief History of Music and Violence. Voices: A World Forum for Music The, 15(2). Retrieved from https://www.youtube.com/watch?v=lKpLckWMehr, S., Singh, M., Knox, D., Lucas, C., Ketter, D., Pickens-Jones, D., … Glowacki, L. (2018). A natural history of song. PsyArXiv Preprints.Meister, I. G., Boroojerdi, B., Foltys, H., Sparing, R., Huber, W., & Töpper, R. (2003). Motor cortex hand area and speech: implications for the development of language. Neuropsychologia, 41(4), 401–406.Merker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 4–17. https://doi.org/10.1016/j.cortex.2008.06.011Miller, G. F. (2001). Evolution of Human Music through Sexual Selection. The Origins of Music, 329–360. https://doi.org/10.7551/mitpress/5190.003.0025Miller, K. J., Foster, B. L., & Honey, C. J. (2012). Does rhythmic entrainment represent a generalized mechanism for organizing computation in the brain? Frontiers inMitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. A., Andrew, C. M., & Williams, S. C. R. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150–1162. https://doi.org/10.1002/hbm.20337Morton, D., & Malm, W. P. (2006). Music Cultures of the Pacific, the Near East, and Asia. Ethnomusicology, 12(1), 140. https://doi.org/10.2307/850562Mosing, M. A., Verweij, K. J. H., Madison, G., Pedersen, N. L., Zietsch, B. P., & Ullén, F. (2015). Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10,000 twins. Evolution and Human Behavior, 36(5), 359–366. https://doi.org/10.1016/j.evolhumbehav.2015.02.004Müller, F. “Floyd,” Agamanolis, S., & Picard, R. (2003). Exertion interfaces: sports over a distance for social bonding and fun. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI’03, 561–568. https://doi.org/10.1145/642611.642709Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473–478. https://doi.org/10.1038/nrn843Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537–537. https://doi.org/10.1038/35046199North, A. C., & Hargreaves, D. J. (1999). Music and Adolescent Identity. Music Education Research, 1(1), 75–92. https://doi.org/10.1080/1461380990010107North, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to adolescents. British Journal of Educational Psychology, 70(2), 255–272. 100 https://doi.org/10.1348/000709900158083Nowicki, S., & Marler, P. (1988). How do birds sing? Music Perception: An Interdisciplinary Journal, 5(4), 391–426.Nozaradan, S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, pp. 20130393–20130393. https://doi.org/10.1098/rstb.2013.0393Nunes Silva, M., & Geraldi Haase, V. (2013). Amusias and modularity of musical cognitive processing. Psychology and Neuroscience, 6(1), 45–56. https://doi.org/10.3922/j.psns.2013.1.08O’Neill, C. T., Trainor, L. J., & Trehub, S. E. (2001). Infants’ Responsiveness to Fathers’ Singing. Music Perception, 18(4), 409–425. https://doi.org/10.1525/mp.2001.18.4.409Obleser, J., & Eisner, F. (2009). Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 13(1), 14–19. https://doi.org/10.1016/j.tics.2008.09.005Patel, A. D. (2010). Music, biological evolution, and the brain. In Vesicle.Nsi.Edu.Patel, A. D. (2014). The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong? PLoS Biology, 12(3). https://doi.org/10.1371/journal.pbio.1001821Pearce, E., Launay, J., Van Duijn, M., Rotkirch, A., David-Barrett, T., & Dunbar, R. I. M. (2016). Singing together or apart: The effect of competitive and cooperative singing on social bonding within and between sub-groups of a university Fraternity. Psychology of Music, 44(6), 1255–1273. https://doi.org/10.1177/0305735616636208Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., … Koelsch, 101 S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences, 107(10), 4758–4763. https://doi.org/10.1073/pnas.0909074107Peretz, I. (1990). Processing of local and global musical information by unilateral braindamaged patients. Brain : A Journal of Neurology, 113 ( Pt 4, 1185–1205.Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1), 1–32. https://doi.org/10.1016/j.cognition.2005.11.004Peretz, I. (2009). Music, Language and Modularity Framed in Action. Psychologica Belgica, 49(2–3), 157. https://doi.org/10.5334/pb-49-2-3-157Peretz, I. (2016). Neurobiology of Congenital Amusia. Trends in Cognitive Sciences, 20(11), 857–867. https://doi.org/10.1016/j.tics.2016.09.002Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital Amusia: A disorder of fine-grained pitch discrimination. Neuron, 33(2), 185–191. https://doi.org/10.1016/S0896-6273(01)00580-3Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, Vol. 6, pp. 688–691. https://doi.org/10.1038/nn1083Peretz, I., Cummings, S., & Dubé, M.-P. (2007). The Genetics of Congenital Amusia (Tone Deafness): A Family-Aggregation Study. The American Journal of Human Genetics, 81(3), 582–588. https://doi.org/10.1086/521337Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7(8), 362–367. https://doi.org/10.1016/S1364-6613(03)00150-5Pfeifer, J., & Hamann, S. (2018). The Nature and Nurture of Congenital Amusia: A Twin Case Study. Frontiers in Behavioral Neuroscience, 12, 120. https://doi.org/10.3389/fnbeh.2018.00120Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception, 28(1), 3–14. https://doi.org/10.1525/mp.2010.28.1.3Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49(5), 961–969. https://doi.org/10.1016/j.neuropsychologia.2011.02.002Pinker, S. (1997). How the mind works (Vol. 35). W. W. Norton & Company.Pinker, S. (1998). How the mind works. London: Penguin Books.Pinker, S. (2007). Toward a consilient study of literature. Philosophy and Literature, 31(1), 162–178. https://doi.org/10.1353/phl.2007.0016Porter, J., Blacking, J., & Byron, R. (2006). Music, Culture and Experience: Selected Papers of John Blacking. Western Folklore, 55(2), 163. https://doi.org/10.2307/1500182Rabinowitch, T. C., Cross, I., & Burnard, P. (2013). Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music, 41(4), 484– 498. https://doi.org/10.1177/0305735612440609Racette, A., Bard, C., & Peretz, I. (2006). Making non-fluent aphasics speak: Sing along! Brain, 129(10), 2571–2584. https://doi.org/10.1093/brain/awl250Rappoport, D., & Dana. (2004). Musique et morphologie rituelle. Chez les Toraja d’Indonésie. L’Homme. Revue Française d’anthropologie, (171–172), 197–218. https://doi.org/10.4000/lhomme.24892Rauschecker, J. P., Friederici, A. D., & Wise, R. J. S. (2012). Ventral and dorsal streams in the evolution of speech and language. https://doi.org/10.3389/fnevo.2012.00007Rivers, J. W., & Kroodsma, D. E. (2000). Singing Behavior of the Hermit Thrush. Journal 103 of Field Ornithology, 71(3), 467–471. https://doi.org/10.1648/0273-8570-71.3.467Rodrigues, A. C., Loureiro, M., & Caramelli, P. (2014). Visual memory in musicians and non-musicians. Frontiers in Human Neuroscience, 8, 424. https://doi.org/10.3389/fnhum.2014.00424Rouget, G. (2004). L’efficacité musicale: musiquer pour survivre. Le cas des Pygmées. L’Homme. Revue Française d’anthropologie, (171–172), 27–52. https://doi.org/10.4000/lhomme.24855Rouse, A. A., Cook, P. F., Large, E. W., & Reichmuth, C. (2016). Beat keeping in a sea lion as coupled oscillation: Implications for comparative understanding of human rhythm. Frontiers in Neuroscience, 10, 256. https://doi.org/10.3389/fnins.2016.00257Saarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation. Psychology of Music, 35(1), 88–109. https://doi.org/10.1177/0305735607068889Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262. https://doi.org/10.1038/nn.2726Salmon, S. (2012). Musica humana: Thoughts on humanistic aspects of Orff-Schulwerk. Orff Schulwerk Informationen, 87, 13–19Sammler, D. (2018). The Melodic Mind: Neural bases of intonation in speech and music.Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous Motor Entrainment to Music in Multiple Vocal Mimicking Species. Current Biology, 19(10), 831–836. https://doi.org/10.1016/j.cub.2009.03.061Schaller, G. B. (1963). The mountain gorilla Chicago. Univ. Chicago Press.Schladt, T. M., Nordmann, G. C., Emilius, R., Kudielka, B. M., de Jong, T. R., & 104 Neumann, I. D. (2017). Choir versus Solo Singing: Effects on MNeumann, I. D. (2017). Choir versus Solo Singing: Effects on Mood, and Salivary Oxytocin and Cortisol Concentrations. Frontiers in Human Neuroscience, 11, 430. https://doi.org/10.3389/fnhum.2017.00430Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 37–55. https://doi.org/10.1016/bs.pbr.2014.11.020Schlaug, G., Marchina, S., & Norton, A. (2008). From Singing to Speaking: Why Singing May Lead to Recovery of Expressive Language Function in Patients with Broca’s Aphasia. Music Perception, 25(4), 315–323. https://doi.org/10.1525/MP.2008.25.4.315Schögler, B. (1998). Music as a tool in communications research. Nordisk Tidsskrift for Musikkterapi, 7(1), 40–49. https://doi.org/10.1080/08098139809477919Schuppert, M., Münte, T. F., Wieringa, B. M., & Altenmüller, E. (2000). Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies. Brain, 123(3), 546–559. https://doi.org/10.1093/brain/123.3.546Seeger, A. (2017). Chanter l’identité. L’Homme. Revue Française d’anthropologie, (171– 172), 135–150. https://doi.org/10.4000/lhomme.24877Smith, J. N., Goldizen, A. W., Dunlop, R. A., & Noad, M. J. (2008). Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Animal Behaviour, 76(2), 467–477. https://doi.org/10.1016/J.ANBEHAV.2008.02.013Sparks, R., Helm, N., & Albert, M. (1974). Aphasia rehabilitation resulting from melodic intonation therapy. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 10(4), 303–316.Stainsby, T., & Cross, I. (2012). The perception of pitch (Vol. 1; S. Hallam, I. Cross, & M. 105 Thaut, Eds.). https://doi.org/10.1093/oxfordhb/9780199298457.013.0005Steinthal, H. (1881). Einleitung in die Psychologie und Sprachwissenschaft.Sue Carter, C. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23(8), 779–818. https://doi.org/10.1016/S0306- 4530(98)00055-9Sullivan, P., & Rickers, K. (2013). The effect of behavioral synchrony in groups of teammates and strangers. International Journal of Sport and Exercise Psychology, 11(3), 286–291. https://doi.org/10.1080/1612197X.2013.750139Suzuki, M., Kanamori, M., Watanabe, M., Nagasawa, S., Kojima, E., Ooshiro, H., & Nakahara, D. (2004). Behavioral and endocrinological evaluation of music therapy for elderly patients with dementia. Nursing and Health Sciences, 6(1), 11–18. https://doi.org/10.1111/j.1442-2018.2003.00168.xTalamini, F., Carretti, B., & Grassi, M. (2016). The Working Memory of Musicians and Nonmusicians. Music Perception: An Interdisciplinary Journal, 34(2), 183–191. https://doi.org/10.1525/mp.2016.34.2.183Tattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618Tattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618Teramitsu, I., & White, S. A. (2006). FoxP2 Regulation during Undirected Singing in Adult Songbirds. Journal of Neuroscience, 26(28), 7390–7394. https://doi.org/10.1523/jneurosci.1662-06.2006Theorell, T. (2014). Music in Social Cohesion. In Psychological Health Effects of Musical Experiences (pp. 17–27). https://doi.org/10.1007/978-94-017-8920-2_3Thorpe, L. A., & Cohen, A. J. (2007). The origins of musicality. Infant Behavior and Development, 7, 363. https://doi.org/10.1016/s0163-6383(84)80425-7Tomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121–125. https://doi.org/10.1111/j.1467-7687.2007.00573.xTomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–691. https://doi.org/10.1017/S0140525X05000129Trainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is infant-directed speech prosody a result of the vocal expression of emotion? Psychological Science, 11(3), 188–195. https://doi.org/10.1111/1467-9280.00240Trehub, S. E. (2001). Human processing predispositions and musical universals. In The origins of music. (pp. 427–448).Trehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience, Vol. 6, pp. 669–673. https://doi.org/10.1038/nn1084Trehub, S. E. (2018). Human Processing Predispositions and Musical Universals. In B. M. & S. B. N. L. Wallin (Ed.), The Origins of Music (pp. 427–448). https://doi.org/10.7551/mitpress/5190.003.0030Trehub, S. E., Plantinga, J., Brcic, J., & Nowicki, M. (2013). Cross-modal signatures in maternal speech and singing. Frontiers in Psychology, 4, 811. https://doi.org/10.3389/fpsyg.2013.00811Tyack, P. L. (1997). Vocal learning in cetaceans. Social Influences on Vocal Development, 26, 208–233. Retrieved from http://books.google.ch/books?id=U7h3s79HcrACUllén, F., Mosing, M. A., Holm, L., Eriksson, H., & Madison, G. (2014). Psychometric properties and heritability of a new online test for musicality, the Swedish Musical Discrimination Test. Personality and Individual Differences, 63, 87–93. https://doi.org/10.1016/j.paid.2014.01.057Uozumi, T., Tamagawa, A., Hashimoto, T., & Tsuji, S. (2004). Motor hand representation in cortical area 44. Neurology, 62(5), 757–761.Uvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23(8), 819–835. https://doi.org/10.1016/S0306-4530(98)00056-0Valdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion. Emotion, 11(2), 262–266. https://doi.org/10.1037/a0021302Van Puyvelde, M., Vanfleteren, P., Loots, G., Deschuyffeleer, S., Vinck, B., Jacquet, W., & Verhelst, W. (2010). Tonal synchrony in mother-infant interaction based on harmonic and pentatonic series. Infant Behavior and Development, 33(4), 387–400. https://doi.org/10.1016/j.infbeh.2010.04.003Vernia C, A. M., Gustems C, J., & G, Calderón, C. (2016). Ritmo y procesamiento temporal. Aportaciones de Jaques-Dalcroze al lenguaje musical. Magister, 28(1), 35–41. https://doi.org/10.1016/j.magis.2016.06.003Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The Musical Ear Test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196. https://doi.org/10.1016/j.lindif.2010.02.004Wallin, N. L., Merker, B. H., & Brown, S. (2000). The origins of music. MIT Press.Wan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, Vol. 16, pp. 566–577. https://doi.org/10.1177/1073858410377805Webb, D. M., & Zhang, J. (2005). FoxP2 in song-learning birds and vocal-learning mammals. Journal of Heredity, 96(3), 212–216. https://doi.org/10.1093/jhered/esi025Weinstein, D., Launay, J., Pearce, E., Dunbar, R. I. M., & Stewart, L. (2016). Singing and social bonding: Changes in connectivity and pain threshold as a function of group size. Evolution and Human Behavior, 37(2), 152–158. https://doi.org/10.1016/j.evolhumbehav.2015.10.002Welch, G. F., Himonides, E., Saunders, J., Papageorgi, I., & Sarazin, M. (2014). Singing and social inclusion. Frontiers in Psychology, 5, 803. https://doi.org/10.3389/fpsyg.2014.00803Whaling, C. (2000). What’s behind a song? The neural basis of song learning in birds. The Origins of Music, 65–76White, S. A. (2010). Genes and vocal learning. Brain and Language, 115(1), 21–28. https://doi.org/10.1016/j.bandl.2009.10.002Williams, D. (2004). Homologues and Homology, Phenetics and Cladistics. Systematics Association Special Volume, 67, 191–224. https://doi.org/10.1201/9780203643037.ch9Youngerman, S. (1974). Maori Dancing since the Eighteenth Century. Ethnomusicology, 18(1), 75. https://doi.org/10.2307/850061Zatorre, R J, & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex (New York, N.Y. : 1991), 11(10), 946–953.Zatorre, Robert J. (1979). Recognition of dichotic melodies by musicians and nonmusicians. Neuropsychologia, 17(6), 607–617. https://doi.org/10.1016/0028- 3932(79)90035-6Zhishuai, J., Hong, L., Daxing, W., Pin, Z., & Xuejing, L. (2017). Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study. NeuroImage: Clinical, 14, 602–609. https://doi.org/10.1016/J.NICL.2017.02.024Zimmerman, E., & Maron, J. L. (2016). FOXP2 gene deletion and infant feeding difficulties: a case report. Molecular Case Studies, 2(1), a000547. https://doi.org/10.1101/mcs.a000547Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic contour and speech intonation in congenital amusics with Mandarin Chinese. Neuropsychologia, 48(9), 2630–2639. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.05.009THUMBNAILTE-20249.pdf.jpgTE-20249.pdf.jpgIM Thumbnailimage/jpeg2360http://repository.pedagogica.edu.co/bitstream/20.500.12209/10443/3/TE-20249.pdf.jpgea30df14e2207c43094519d4db5012f0MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.pedagogica.edu.co/bitstream/20.500.12209/10443/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALTE-20249.pdfTE-20249.pdfapplication/pdf1165472http://repository.pedagogica.edu.co/bitstream/20.500.12209/10443/1/TE-20249.pdf21746792c6a3786208a52fd25d495393MD5120.500.12209/10443oai:repository.pedagogica.edu.co:20.500.12209/104432021-06-04 11:50:50.672Repositorio Institucional Universidad Pedagógica Nacionalrepositorio@pedagogica.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=