Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
La estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ve...
- Autores:
-
Fayad Sierra, Jorge
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica Nacional
- Repositorio:
- Repositorio Institucional UPN
- Idioma:
- spa
- OAI Identifier:
- oai:repository.pedagogica.edu.co:20.500.12209/16555
- Acceso en línea:
- http://hdl.handle.net/20.500.12209/16555
- Palabra clave:
- Antropometría
Decúbito supino
Exactitud
Error
Kinect
Precisión
Visión por computador
Anthropometry
Error
Accuracy
Supine decubitus
Kinect
Precision
Computer vision
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
RPEDAGO2_c9d0583103b60848b2859c950da3b69a |
---|---|
oai_identifier_str |
oai:repository.pedagogica.edu.co:20.500.12209/16555 |
network_acronym_str |
RPEDAGO2 |
network_name_str |
Repositorio Institucional UPN |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. |
title |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. |
spellingShingle |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. Antropometría Decúbito supino Exactitud Error Kinect Precisión Visión por computador Anthropometry Error Accuracy Supine decubitus Kinect Precision Computer vision |
title_short |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. |
title_full |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. |
title_fullStr |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. |
title_full_unstemmed |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. |
title_sort |
Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. |
dc.creator.fl_str_mv |
Fayad Sierra, Jorge |
dc.contributor.advisor.none.fl_str_mv |
Peña Morales, David |
dc.contributor.author.none.fl_str_mv |
Fayad Sierra, Jorge |
dc.subject.spa.fl_str_mv |
Antropometría Decúbito supino Exactitud Error Kinect Precisión Visión por computador |
topic |
Antropometría Decúbito supino Exactitud Error Kinect Precisión Visión por computador Anthropometry Error Accuracy Supine decubitus Kinect Precision Computer vision |
dc.subject.keywords.spa.fl_str_mv |
Anthropometry Error Accuracy Supine decubitus Kinect Precision Computer vision |
description |
La estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ventiladores mecánicos; esto puede poner en riesgo la vida de los pacientes. Por lo anterior, aprovechando las bondades de la visión por computador, se plantea el proyecto Sistema De Valoración Antropométrica Para Estimar La Masa De Personas Postradas En Cama Basado En Visión Por Computador, con la intención de hacer una primera versión de un instrumento que estime estatura, envergadura, altura a la rodilla, perímetros de brazo, pantorrilla, cintura; así como la masa corporal del paciente. El sistema se desarrolló bajo un escenario controlado en términos de iluminación, un prototipo de estructura que sostiene un sensor Kinect V2 a una altura determinada, para capturar la imagen RGB y en profundidad de un paciente acostado y procesarlas, logrando estimar las medidas mencionadas en el párrafo anterior. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-02T20:43:34Z |
dc.date.available.none.fl_str_mv |
2021-11-02T20:43:34Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12209/16555 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Pedagógica Nacional |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional de la Universidad Pedagógica Nacional |
dc.identifier.repourl.none.fl_str_mv |
repourl: http://repositorio.pedagogica.edu.co/ |
url |
http://hdl.handle.net/20.500.12209/16555 |
identifier_str_mv |
instname:Universidad Pedagógica Nacional reponame:Repositorio Institucional de la Universidad Pedagógica Nacional repourl: http://repositorio.pedagogica.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
antropometría | Definición | Diccionario de la lengua española | RAE - ASALE. (n.d.). Retrieved September 5, 2021, from https://dle.rae.es/antropometría Cannon, C. P. (2000). Thrombolysis medication errors: benefits of bolus thrombolytic agents. The American Journal of Cardiology, 85(8), 17–22. https://doi.org/10.1016/S0002-9149(00)00874-2 Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013a). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2 Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013b). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2 Cubison, T. C. S. (2005). So much for percentage, but what about the weight? Emerg Med J, 22, 643–645. https://doi.org/10.1136/emj.2003.011304 Espa, E. (2003). Diccionario Mosby de Medicina , Enfermería y Ciencias de la Salud , 6a ed . Códex del Laboratorio Clínico . Indicaciones e interpretación de los exámenes de laboratorio. 1(2), 149–150. https://books.google.com/books/about/Diccionario_Mosby.html?hl=es&id=coYUp744m5kC Fitriyah, H., & Edhi Setyaw, G. (2018a). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688 Fitriyah, H., & Edhi Setyaw, G. (2018b). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688 Forschungsberichte in Robotik, W., Schilling Nüchter, K. A., & Wuerzburg Research Notes, U. (n.d.). Christian Pfitzner Band 18 Visual Human Body Weight Estimation with Focus on Clinical Applications. https://opus.bibliothek.uni-wuerzburg.de Gevers, T., & Smeulders, A. (2016). Foreword. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS, V. https://doi.org/10.1007/978-3-319-46493-0 Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital Image Processing, Third Edition. Journal of Biomedical Optics, 14(2), 029901. https://doi.org/10.1117/1.3115362 Jiang, M., & Guo, G. (2019a). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840 Jiang, M., & Guo, G. (2019b). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840 Khan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.355 Kocabas, M., Athanasiou, N., & Black, M. J. (n.d.). VIBE: Video Inference for Human Body Pose and Shape Estimation. https://github.com/mkocabas/VIBE Kocabas, M., Athanasiou, N., & Black, M. J. (2019). VIBE: Video inference for human body pose and shape estimation. ArXiv, 5253–5263. Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012a). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775 Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012b). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775 Leibe, B., Matas, J., Sebe, N., & Welling, M. (Eds.). (2016). Computer Vision – ECCV 2016 (Vol. 9906). Springer International Publishing. https://doi.org/10.1007/978-3-319-46475-6 Lifshitz, I., Fetaya, E., & Ullman, S. (2016). Human pose estimation using deep consensus voting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS, 246–260. https://doi.org/10.1007/978-3-319-46475-6_16 Lin, C. B., Dong, Z., Kuan, W. K., & Huang, Y. F. (2021). A framework for fall detection based on openpose skeleton and lstm/gru models. Applied Sciences (Switzerland), 11(1), 1–20. https://doi.org/10.3390/app11010329 Liu, Y., Sowmya, A., & Khamis, H. (2018a). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4), 1–22. https://doi.org/10.1371/journal.pone.0195600 Lu, J. M., & Wang, M. J. J. (2008). Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications, 35(1–2), 407–414. https://doi.org/10.1016/j.eswa.2007.07.008 Madrazo Pérez, M., & Torres Manrique, B. (n.d.). Gestión de los Servicios en Enfermería Ministerio de salud de Colombia. (2020, June 18). Se define valores de referencia a pagar por servicios UCI de covid-19. https://www.minsalud.gov.co/Paginas/Se-define-valores-de-referencia-a-pagar-por-servicios-UCI-de-covid-19.aspx Paar, A., Rüther, M., Bischof, H., Skrabal, F., Pirker, K., & Pichler, G. (2009). Human Body Volume Estimation in a Clinical Environment Combyn ECG Segmental Impedance Spectroscopy View project Glucose Monitoring View project Katrin Santner Human Body Volume Estimation in a Clinical Environment. https://www.researchgate.net/publication/228541158 Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015a). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593 Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015b). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593 Pfitzner, C., May, S., & Nüchter, A. (2016). Neural network-based visual body weight estimation for drug dosage finding. Medical Imaging 2016: Image Processing, 9784(March), 97841Z. https://doi.org/10.1117/12.2216042 Pfitzner, C., May, S., & Nüchter, A. (2017). Evaluation of Features from RGB-D Data for Human Body Weight Estimation. IFAC-PapersOnLine, 50(1), 10148–10153. https://doi.org/10.1016/j.ifacol.2017.08.1761 Pfitzner, C., May, S., & Nüchter, A. (2018a). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311 Pfitzner, C., May, S., & Nüchter, A. (2018b). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311 Pirker, K., & Matthias, R. (2009). Human Body Volume Estimation in a Clinical Environment. May 2014. PROCESO DE PRESTACION DE LOS SERVICIOS SOCIALES ETAPA PARA PRESTAR SERVICIOS SOCIALES INTEGRALES PROCEDIMIENTO DEL SISTEMA DE VIGILANCIA NUTRICIONAL INSTRUCTIVO PARA LA TOMA Y REGISTRO DE MEDIDAS ANTROPOMETRICAS DE LOS ADULTOS Y LAS ADULTAS CON DISCAPACIDAD Y DIFICULTAD PARA ASUMIR LA BIPEDESTACIÓN. (n.d.). Retrieved September 1, 2021, from www.integracionsocial.gov.co Resolución Número 914 De 2020. (n.d.). https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución No. 914 de 2020.pdf S, M., & AM, K. (2005). How accurate is weight estimation in the emergency department? Emergency Medicine Australasia : EMA, 17(2), 113–116. https://doi.org/10.1111/J.1742-6723.2005.00701.X Seo, D., Kang, E., Kim, Y. mi, Kim, S. Y., Oh, I. S., & Kim, M. G. (2020). SVM-based waist circumference estimation using Kinect. Computer Methods and Programs in Biomedicine, 191, 105418. https://doi.org/10.1016/j.cmpb.2020.105418 Servicios sanitarios de calidad. (n.d.). Retrieved September 4, 2021, from https://www.who.int/es/news-room/fact-sheets/detail/quality-health-services Spencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. In Engineering (Vol. 5, Issue 2). https://doi.org/10.1016/j.eng.2018.11.030 Stancic, I., Cecić, M., & Supuk, T. (n.d.). Computer vision system for human anthropometric parameters estimation Computer vision in kinematic analysis of sports activities View project Smartbots-Autonomous Control of Mobile Robots Using Computer Vision Algorithms and Modern Neural Network Architec. https://www.researchgate.net/publication/228667014 Stančić, I., Musić, J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement: Journal of the International Measurement Confederation, 46(1), 716–726. https://doi.org/10.1016/j.measurement.2012.09.010 Stancic, I., Supuk, T., & Cecic, M. (2009). Computer vision system for human anthropometric parameters estimation. WSEAS Transactions on Systems, 8(3), 430–439. Uhm, T., Park, H., & Park, J. Il. (2015). Fully vision-based automatic human body measurement system for apparel application. Measurement: Journal of the International Measurement Confederation, 61, 169–179. https://doi.org/10.1016/j.measurement.2014.10.044 Velardo, C., & Dugelay, J. L. (2010). Weight estimation from visual body appearance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634540 Velardo, C., & Dugelay, J. L. (2012). What can computer vision tell you about your weight? European Signal Processing Conference, November, 1980–1984. Wang, L., Li, D., Zhu, Y., Tian, L., & Shan, Y. (n.d.). Dual Super-Resolution Learning for Semantic Segmentation. Liu, Y., Sowmya, A., & Khamis, H. (2018b). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195600 |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.none.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Attribution-NonCommercial-NoDerivatives 4.0 International |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Pedagógica Nacional |
dc.publisher.program.spa.fl_str_mv |
Licenciatura en Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencia y Tecnología |
institution |
Universidad Pedagógica Nacional |
bitstream.url.fl_str_mv |
http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/10/sistemadevaloracionantropometrica.pdf.jpg http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/8/license.txt http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/9/202103650159573-27OCT2021%20JORGE%20FAYAD.pdf http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/6/sistemadevaloracionantropometrica.pdf |
bitstream.checksum.fl_str_mv |
212525a118897ab03d18e9a2d7981791 8a4605be74aa9ea9d79846c1fba20a33 f6463ffcc45a87a68a942df7833a3396 924f4d6d47f9e59d67cb659715ffa619 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Pedagógica Nacional |
repository.mail.fl_str_mv |
repositorio@pedagogica.edu.co |
_version_ |
1814445195657216000 |
spelling |
Peña Morales, DavidFayad Sierra, Jorge2021-11-02T20:43:34Z2021-11-02T20:43:34Z2021http://hdl.handle.net/20.500.12209/16555instname:Universidad Pedagógica Nacionalreponame:Repositorio Institucional de la Universidad Pedagógica Nacionalrepourl: http://repositorio.pedagogica.edu.co/La estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ventiladores mecánicos; esto puede poner en riesgo la vida de los pacientes. Por lo anterior, aprovechando las bondades de la visión por computador, se plantea el proyecto Sistema De Valoración Antropométrica Para Estimar La Masa De Personas Postradas En Cama Basado En Visión Por Computador, con la intención de hacer una primera versión de un instrumento que estime estatura, envergadura, altura a la rodilla, perímetros de brazo, pantorrilla, cintura; así como la masa corporal del paciente. El sistema se desarrolló bajo un escenario controlado en términos de iluminación, un prototipo de estructura que sostiene un sensor Kinect V2 a una altura determinada, para capturar la imagen RGB y en profundidad de un paciente acostado y procesarlas, logrando estimar las medidas mencionadas en el párrafo anterior.Submitted by Jorge Fayad Sierra (dte_jfayad304@pedagogica.edu.co) on 2021-10-28T03:28:41Z No. of bitstreams: 2 SISTEMA DE VALORACIÓN ANTROPOMÉTRICA.pdf: 3571932 bytes, checksum: d9bc9ea7983a01607bbe37c1d60ed23c (MD5) licencia_uso_trabajos_y_tesis_grado_.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Rejected by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co), reason: Cordial saludo Señor Fayad: Al realizar la primera revisión del registro y documentos anexos se encontraron varias inconsistencias que deben ser corregidas con el fin de poder aceptar el envío del registro y documentos anexos, por favor realizarlas lo más pronto posible: 1. En el Trabajo de grado en las portadas los títulos no son iguales (la 2da portada debe corregir el título tal como aparece en la 1ra portada), deben ser los mismos y completos en las portadas, en la Licencia de uso y en el registro del repositorio. 2. En el registro en el campo del título en español debe ser el mismo que está en la portada y termina en punto final, así: Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. Nota: También para el campo del título traducido aplica la inconsistencia. 3. En el registro en las palabras claves corregir: Visión por Computador por Visión por computador y en las Keywords corregir: Computer Vision por Computer vision 4. En el registro debe colocar TODAS las referencias que señalaron en el Trabajo de grado que son 47 pero en el registro aparecen 46. on 2021-10-28T12:16:32Z (GMT)Submitted by Jorge Fayad Sierra (dte_jfayad304@pedagogica.edu.co) on 2021-10-28T15:41:23Z No. of bitstreams: 2 licencia_uso_trabajos_y_tesis_grado_.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5) SISTEMA DE VALORACIÓN ANTROPOMÉTRICA.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5)Rejected by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co), reason: Cordial saludo. El envío se devuelve. Nombre del archivo en minúscula SIN TILDES, ni espacios, ni caracteres especiales. Corregir el envío on 2021-10-30T00:14:42Z (GMT)Submitted by Jorge Fayad Sierra (dte_jfayad304@pedagogica.edu.co) on 2021-10-30T06:23:22Z No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Approved for entry into archive by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co) on 2021-10-31T00:46:57Z (GMT) No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Approved for entry into archive by Melissa Cuastuza (mcuastuza@pedagogica.edu.co) on 2021-11-02T20:43:34Z (GMT) No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Made available in DSpace on 2021-11-02T20:43:34Z (GMT). No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5) Previous issue date: 2021Licenciado en ElectrónicaPregradoThe subjective estimation of anthropometric measures, such as height and body mass in bedridden people, tends to have inaccuracies in the assessment of such magnitudes, hence, in some cases there are errors in drug formulation or parameterization of mechanical ventilators; this can put patients' lives at risk. Therefore, taking the benefits of computer vision, the project Anthropometric Estimation System for body Mass estimation to Bedridden People Based on Computer Vision is proposed, as an attempt to make a first version of an instrument that estimates stature, wingspan, height to the knee, arm, calf, waist perimeters; as well as the patient's body mass. The system was developed under a controlled scenario in terms of lighting, using the prototype of a structure that supports a Kinect V2 sensor at a certain height, to capture the RGB and depth images of a lying patient and process them, managing to estimate all measurements mentioned in the previous paragraph.application/pdfspaUniversidad Pedagógica NacionalLicenciatura en ElectrónicaFacultad de Ciencia y Tecnologíahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAntropometríaDecúbito supinoExactitudErrorKinectPrecisiónVisión por computadorAnthropometryErrorAccuracySupine decubitusKinectPrecisionComputer visionSistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.info:eu-repo/semantics/bachelorThesisTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisantropometría | Definición | Diccionario de la lengua española | RAE - ASALE. (n.d.). Retrieved September 5, 2021, from https://dle.rae.es/antropometríaCannon, C. P. (2000). Thrombolysis medication errors: benefits of bolus thrombolytic agents. The American Journal of Cardiology, 85(8), 17–22. https://doi.org/10.1016/S0002-9149(00)00874-2Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013a). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013b). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2Cubison, T. C. S. (2005). So much for percentage, but what about the weight? Emerg Med J, 22, 643–645. https://doi.org/10.1136/emj.2003.011304Espa, E. (2003). Diccionario Mosby de Medicina , Enfermería y Ciencias de la Salud , 6a ed . Códex del Laboratorio Clínico . Indicaciones e interpretación de los exámenes de laboratorio. 1(2), 149–150. https://books.google.com/books/about/Diccionario_Mosby.html?hl=es&id=coYUp744m5kCFitriyah, H., & Edhi Setyaw, G. (2018a). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688Fitriyah, H., & Edhi Setyaw, G. (2018b). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688Forschungsberichte in Robotik, W., Schilling Nüchter, K. A., & Wuerzburg Research Notes, U. (n.d.). Christian Pfitzner Band 18 Visual Human Body Weight Estimation with Focus on Clinical Applications. https://opus.bibliothek.uni-wuerzburg.deGevers, T., & Smeulders, A. (2016). Foreword. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS, V. https://doi.org/10.1007/978-3-319-46493-0Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital Image Processing, Third Edition. Journal of Biomedical Optics, 14(2), 029901. https://doi.org/10.1117/1.3115362Jiang, M., & Guo, G. (2019a). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840Jiang, M., & Guo, G. (2019b). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840Khan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.355Kocabas, M., Athanasiou, N., & Black, M. J. (n.d.). VIBE: Video Inference for Human Body Pose and Shape Estimation. https://github.com/mkocabas/VIBEKocabas, M., Athanasiou, N., & Black, M. J. (2019). VIBE: Video inference for human body pose and shape estimation. ArXiv, 5253–5263.Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012a). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012b). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775Leibe, B., Matas, J., Sebe, N., & Welling, M. (Eds.). (2016). Computer Vision – ECCV 2016 (Vol. 9906). Springer International Publishing. https://doi.org/10.1007/978-3-319-46475-6Lifshitz, I., Fetaya, E., & Ullman, S. (2016). Human pose estimation using deep consensus voting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS, 246–260. https://doi.org/10.1007/978-3-319-46475-6_16Lin, C. B., Dong, Z., Kuan, W. K., & Huang, Y. F. (2021). A framework for fall detection based on openpose skeleton and lstm/gru models. Applied Sciences (Switzerland), 11(1), 1–20. https://doi.org/10.3390/app11010329Liu, Y., Sowmya, A., & Khamis, H. (2018a). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4), 1–22. https://doi.org/10.1371/journal.pone.0195600Lu, J. M., & Wang, M. J. J. (2008). Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications, 35(1–2), 407–414. https://doi.org/10.1016/j.eswa.2007.07.008Madrazo Pérez, M., & Torres Manrique, B. (n.d.). Gestión de los Servicios en EnfermeríaMinisterio de salud de Colombia. (2020, June 18). Se define valores de referencia a pagar por servicios UCI de covid-19. https://www.minsalud.gov.co/Paginas/Se-define-valores-de-referencia-a-pagar-por-servicios-UCI-de-covid-19.aspxPaar, A., Rüther, M., Bischof, H., Skrabal, F., Pirker, K., & Pichler, G. (2009). Human Body Volume Estimation in a Clinical Environment Combyn ECG Segmental Impedance Spectroscopy View project Glucose Monitoring View project Katrin Santner Human Body Volume Estimation in a Clinical Environment. https://www.researchgate.net/publication/228541158Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015a). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015b). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593Pfitzner, C., May, S., & Nüchter, A. (2016). Neural network-based visual body weight estimation for drug dosage finding. Medical Imaging 2016: Image Processing, 9784(March), 97841Z. https://doi.org/10.1117/12.2216042Pfitzner, C., May, S., & Nüchter, A. (2017). Evaluation of Features from RGB-D Data for Human Body Weight Estimation. IFAC-PapersOnLine, 50(1), 10148–10153. https://doi.org/10.1016/j.ifacol.2017.08.1761Pfitzner, C., May, S., & Nüchter, A. (2018a). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311Pfitzner, C., May, S., & Nüchter, A. (2018b). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311Pirker, K., & Matthias, R. (2009). Human Body Volume Estimation in a Clinical Environment. May 2014.PROCESO DE PRESTACION DE LOS SERVICIOS SOCIALES ETAPA PARA PRESTAR SERVICIOS SOCIALES INTEGRALES PROCEDIMIENTO DEL SISTEMA DE VIGILANCIA NUTRICIONAL INSTRUCTIVO PARA LA TOMA Y REGISTRO DE MEDIDAS ANTROPOMETRICAS DE LOS ADULTOS Y LAS ADULTAS CON DISCAPACIDAD Y DIFICULTAD PARA ASUMIR LA BIPEDESTACIÓN. (n.d.). Retrieved September 1, 2021, from www.integracionsocial.gov.coResolución Número 914 De 2020. (n.d.). https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución No. 914 de 2020.pdfS, M., & AM, K. (2005). How accurate is weight estimation in the emergency department? Emergency Medicine Australasia : EMA, 17(2), 113–116. https://doi.org/10.1111/J.1742-6723.2005.00701.XSeo, D., Kang, E., Kim, Y. mi, Kim, S. Y., Oh, I. S., & Kim, M. G. (2020). SVM-based waist circumference estimation using Kinect. Computer Methods and Programs in Biomedicine, 191, 105418. https://doi.org/10.1016/j.cmpb.2020.105418Servicios sanitarios de calidad. (n.d.). Retrieved September 4, 2021, from https://www.who.int/es/news-room/fact-sheets/detail/quality-health-servicesSpencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. In Engineering (Vol. 5, Issue 2). https://doi.org/10.1016/j.eng.2018.11.030Stancic, I., Cecić, M., & Supuk, T. (n.d.). Computer vision system for human anthropometric parameters estimation Computer vision in kinematic analysis of sports activities View project Smartbots-Autonomous Control of Mobile Robots Using Computer Vision Algorithms and Modern Neural Network Architec. https://www.researchgate.net/publication/228667014Stančić, I., Musić, J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement: Journal of the International Measurement Confederation, 46(1), 716–726. https://doi.org/10.1016/j.measurement.2012.09.010Stancic, I., Supuk, T., & Cecic, M. (2009). Computer vision system for human anthropometric parameters estimation. WSEAS Transactions on Systems, 8(3), 430–439.Uhm, T., Park, H., & Park, J. Il. (2015). Fully vision-based automatic human body measurement system for apparel application. Measurement: Journal of the International Measurement Confederation, 61, 169–179. https://doi.org/10.1016/j.measurement.2014.10.044Velardo, C., & Dugelay, J. L. (2010). Weight estimation from visual body appearance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634540Velardo, C., & Dugelay, J. L. (2012). What can computer vision tell you about your weight? European Signal Processing Conference, November, 1980–1984.Wang, L., Li, D., Zhu, Y., Tian, L., & Shan, Y. (n.d.). Dual Super-Resolution Learning for Semantic Segmentation.Liu, Y., Sowmya, A., & Khamis, H. (2018b). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195600THUMBNAILsistemadevaloracionantropometrica.pdf.jpgsistemadevaloracionantropometrica.pdf.jpgIM Thumbnailimage/jpeg3640http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/10/sistemadevaloracionantropometrica.pdf.jpg212525a118897ab03d18e9a2d7981791MD510LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58202103650159573-27OCT2021 JORGE FAYAD.pdf202103650159573-27OCT2021 JORGE FAYAD.pdfLICENCIA APROBADAapplication/pdf161007http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/9/202103650159573-27OCT2021%20JORGE%20FAYAD.pdff6463ffcc45a87a68a942df7833a3396MD59ORIGINALsistemadevaloracionantropometrica.pdfsistemadevaloracionantropometrica.pdfapplication/pdf3572159http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/6/sistemadevaloracionantropometrica.pdf924f4d6d47f9e59d67cb659715ffa619MD5620.500.12209/16555oai:repository.pedagogica.edu.co:20.500.12209/165552021-11-03 23:02:06.97Repositorio Institucional Universidad Pedagógica Nacionalrepositorio@pedagogica.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |