Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.

La estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ve...

Full description

Autores:
Fayad Sierra, Jorge
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Pedagógica Nacional
Repositorio:
Repositorio Institucional UPN
Idioma:
spa
OAI Identifier:
oai:repository.pedagogica.edu.co:20.500.12209/16555
Acceso en línea:
http://hdl.handle.net/20.500.12209/16555
Palabra clave:
Antropometría
Decúbito supino
Exactitud
Error
Kinect
Precisión
Visión por computador
Anthropometry
Error
Accuracy
Supine decubitus
Kinect
Precision
Computer vision
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id RPEDAGO2_c9d0583103b60848b2859c950da3b69a
oai_identifier_str oai:repository.pedagogica.edu.co:20.500.12209/16555
network_acronym_str RPEDAGO2
network_name_str Repositorio Institucional UPN
repository_id_str
dc.title.spa.fl_str_mv Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
title Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
spellingShingle Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
Antropometría
Decúbito supino
Exactitud
Error
Kinect
Precisión
Visión por computador
Anthropometry
Error
Accuracy
Supine decubitus
Kinect
Precision
Computer vision
title_short Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
title_full Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
title_fullStr Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
title_full_unstemmed Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
title_sort Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.
dc.creator.fl_str_mv Fayad Sierra, Jorge
dc.contributor.advisor.none.fl_str_mv Peña Morales, David
dc.contributor.author.none.fl_str_mv Fayad Sierra, Jorge
dc.subject.spa.fl_str_mv Antropometría
Decúbito supino
Exactitud
Error
Kinect
Precisión
Visión por computador
topic Antropometría
Decúbito supino
Exactitud
Error
Kinect
Precisión
Visión por computador
Anthropometry
Error
Accuracy
Supine decubitus
Kinect
Precision
Computer vision
dc.subject.keywords.spa.fl_str_mv Anthropometry
Error
Accuracy
Supine decubitus
Kinect
Precision
Computer vision
description La estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ventiladores mecánicos; esto puede poner en riesgo la vida de los pacientes. Por lo anterior, aprovechando las bondades de la visión por computador, se plantea el proyecto Sistema De Valoración Antropométrica Para Estimar La Masa De Personas Postradas En Cama Basado En Visión Por Computador, con la intención de hacer una primera versión de un instrumento que estime estatura, envergadura, altura a la rodilla, perímetros de brazo, pantorrilla, cintura; así como la masa corporal del paciente. El sistema se desarrolló bajo un escenario controlado en términos de iluminación, un prototipo de estructura que sostiene un sensor Kinect V2 a una altura determinada, para capturar la imagen RGB y en profundidad de un paciente acostado y procesarlas, logrando estimar las medidas mencionadas en el párrafo anterior.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-02T20:43:34Z
dc.date.available.none.fl_str_mv 2021-11-02T20:43:34Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12209/16555
dc.identifier.instname.spa.fl_str_mv instname:Universidad Pedagógica Nacional
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional de la Universidad Pedagógica Nacional
dc.identifier.repourl.none.fl_str_mv repourl: http://repositorio.pedagogica.edu.co/
url http://hdl.handle.net/20.500.12209/16555
identifier_str_mv instname:Universidad Pedagógica Nacional
reponame:Repositorio Institucional de la Universidad Pedagógica Nacional
repourl: http://repositorio.pedagogica.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv antropometría | Definición | Diccionario de la lengua española | RAE - ASALE. (n.d.). Retrieved September 5, 2021, from https://dle.rae.es/antropometría
Cannon, C. P. (2000). Thrombolysis medication errors: benefits of bolus thrombolytic agents. The American Journal of Cardiology, 85(8), 17–22. https://doi.org/10.1016/S0002-9149(00)00874-2
Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013a). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2
Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013b). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2
Cubison, T. C. S. (2005). So much for percentage, but what about the weight? Emerg Med J, 22, 643–645. https://doi.org/10.1136/emj.2003.011304
Espa, E. (2003). Diccionario Mosby de Medicina , Enfermería y Ciencias de la Salud , 6a ed . Códex del Laboratorio Clínico . Indicaciones e interpretación de los exámenes de laboratorio. 1(2), 149–150. https://books.google.com/books/about/Diccionario_Mosby.html?hl=es&id=coYUp744m5kC
Fitriyah, H., & Edhi Setyaw, G. (2018a). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688
Fitriyah, H., & Edhi Setyaw, G. (2018b). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688
Forschungsberichte in Robotik, W., Schilling Nüchter, K. A., & Wuerzburg Research Notes, U. (n.d.). Christian Pfitzner Band 18 Visual Human Body Weight Estimation with Focus on Clinical Applications. https://opus.bibliothek.uni-wuerzburg.de
Gevers, T., & Smeulders, A. (2016). Foreword. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS, V. https://doi.org/10.1007/978-3-319-46493-0
Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital Image Processing, Third Edition. Journal of Biomedical Optics, 14(2), 029901. https://doi.org/10.1117/1.3115362
Jiang, M., & Guo, G. (2019a). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840
Jiang, M., & Guo, G. (2019b). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840
Khan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.355
Kocabas, M., Athanasiou, N., & Black, M. J. (n.d.). VIBE: Video Inference for Human Body Pose and Shape Estimation. https://github.com/mkocabas/VIBE
Kocabas, M., Athanasiou, N., & Black, M. J. (2019). VIBE: Video inference for human body pose and shape estimation. ArXiv, 5253–5263.
Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012a). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775
Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012b). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775
Leibe, B., Matas, J., Sebe, N., & Welling, M. (Eds.). (2016). Computer Vision – ECCV 2016 (Vol. 9906). Springer International Publishing. https://doi.org/10.1007/978-3-319-46475-6
Lifshitz, I., Fetaya, E., & Ullman, S. (2016). Human pose estimation using deep consensus voting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS, 246–260. https://doi.org/10.1007/978-3-319-46475-6_16
Lin, C. B., Dong, Z., Kuan, W. K., & Huang, Y. F. (2021). A framework for fall detection based on openpose skeleton and lstm/gru models. Applied Sciences (Switzerland), 11(1), 1–20. https://doi.org/10.3390/app11010329
Liu, Y., Sowmya, A., & Khamis, H. (2018a). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4), 1–22. https://doi.org/10.1371/journal.pone.0195600
Lu, J. M., & Wang, M. J. J. (2008). Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications, 35(1–2), 407–414. https://doi.org/10.1016/j.eswa.2007.07.008
Madrazo Pérez, M., & Torres Manrique, B. (n.d.). Gestión de los Servicios en Enfermería
Ministerio de salud de Colombia. (2020, June 18). Se define valores de referencia a pagar por servicios UCI de covid-19. https://www.minsalud.gov.co/Paginas/Se-define-valores-de-referencia-a-pagar-por-servicios-UCI-de-covid-19.aspx
Paar, A., Rüther, M., Bischof, H., Skrabal, F., Pirker, K., & Pichler, G. (2009). Human Body Volume Estimation in a Clinical Environment Combyn ECG Segmental Impedance Spectroscopy View project Glucose Monitoring View project Katrin Santner Human Body Volume Estimation in a Clinical Environment. https://www.researchgate.net/publication/228541158
Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015a). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593
Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015b). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593
Pfitzner, C., May, S., & Nüchter, A. (2016). Neural network-based visual body weight estimation for drug dosage finding. Medical Imaging 2016: Image Processing, 9784(March), 97841Z. https://doi.org/10.1117/12.2216042
Pfitzner, C., May, S., & Nüchter, A. (2017). Evaluation of Features from RGB-D Data for Human Body Weight Estimation. IFAC-PapersOnLine, 50(1), 10148–10153. https://doi.org/10.1016/j.ifacol.2017.08.1761
Pfitzner, C., May, S., & Nüchter, A. (2018a). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311
Pfitzner, C., May, S., & Nüchter, A. (2018b). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311
Pirker, K., & Matthias, R. (2009). Human Body Volume Estimation in a Clinical Environment. May 2014.
PROCESO DE PRESTACION DE LOS SERVICIOS SOCIALES ETAPA PARA PRESTAR SERVICIOS SOCIALES INTEGRALES PROCEDIMIENTO DEL SISTEMA DE VIGILANCIA NUTRICIONAL INSTRUCTIVO PARA LA TOMA Y REGISTRO DE MEDIDAS ANTROPOMETRICAS DE LOS ADULTOS Y LAS ADULTAS CON DISCAPACIDAD Y DIFICULTAD PARA ASUMIR LA BIPEDESTACIÓN. (n.d.). Retrieved September 1, 2021, from www.integracionsocial.gov.co
Resolución Número 914 De 2020. (n.d.). https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución No. 914 de 2020.pdf
S, M., & AM, K. (2005). How accurate is weight estimation in the emergency department? Emergency Medicine Australasia : EMA, 17(2), 113–116. https://doi.org/10.1111/J.1742-6723.2005.00701.X
Seo, D., Kang, E., Kim, Y. mi, Kim, S. Y., Oh, I. S., & Kim, M. G. (2020). SVM-based waist circumference estimation using Kinect. Computer Methods and Programs in Biomedicine, 191, 105418. https://doi.org/10.1016/j.cmpb.2020.105418
Servicios sanitarios de calidad. (n.d.). Retrieved September 4, 2021, from https://www.who.int/es/news-room/fact-sheets/detail/quality-health-services
Spencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. In Engineering (Vol. 5, Issue 2). https://doi.org/10.1016/j.eng.2018.11.030
Stancic, I., Cecić, M., & Supuk, T. (n.d.). Computer vision system for human anthropometric parameters estimation Computer vision in kinematic analysis of sports activities View project Smartbots-Autonomous Control of Mobile Robots Using Computer Vision Algorithms and Modern Neural Network Architec. https://www.researchgate.net/publication/228667014
Stančić, I., Musić, J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement: Journal of the International Measurement Confederation, 46(1), 716–726. https://doi.org/10.1016/j.measurement.2012.09.010
Stancic, I., Supuk, T., & Cecic, M. (2009). Computer vision system for human anthropometric parameters estimation. WSEAS Transactions on Systems, 8(3), 430–439.
Uhm, T., Park, H., & Park, J. Il. (2015). Fully vision-based automatic human body measurement system for apparel application. Measurement: Journal of the International Measurement Confederation, 61, 169–179. https://doi.org/10.1016/j.measurement.2014.10.044
Velardo, C., & Dugelay, J. L. (2010). Weight estimation from visual body appearance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634540
Velardo, C., & Dugelay, J. L. (2012). What can computer vision tell you about your weight? European Signal Processing Conference, November, 1980–1984.
Wang, L., Li, D., Zhu, Y., Tian, L., & Shan, Y. (n.d.). Dual Super-Resolution Learning for Semantic Segmentation.
Liu, Y., Sowmya, A., & Khamis, H. (2018b). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195600
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Pedagógica Nacional
dc.publisher.program.spa.fl_str_mv Licenciatura en Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencia y Tecnología
institution Universidad Pedagógica Nacional
bitstream.url.fl_str_mv http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/10/sistemadevaloracionantropometrica.pdf.jpg
http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/8/license.txt
http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/9/202103650159573-27OCT2021%20JORGE%20FAYAD.pdf
http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/6/sistemadevaloracionantropometrica.pdf
bitstream.checksum.fl_str_mv 212525a118897ab03d18e9a2d7981791
8a4605be74aa9ea9d79846c1fba20a33
f6463ffcc45a87a68a942df7833a3396
924f4d6d47f9e59d67cb659715ffa619
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Pedagógica Nacional
repository.mail.fl_str_mv repositorio@pedagogica.edu.co
_version_ 1814445195657216000
spelling Peña Morales, DavidFayad Sierra, Jorge2021-11-02T20:43:34Z2021-11-02T20:43:34Z2021http://hdl.handle.net/20.500.12209/16555instname:Universidad Pedagógica Nacionalreponame:Repositorio Institucional de la Universidad Pedagógica Nacionalrepourl: http://repositorio.pedagogica.edu.co/La estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ventiladores mecánicos; esto puede poner en riesgo la vida de los pacientes. Por lo anterior, aprovechando las bondades de la visión por computador, se plantea el proyecto Sistema De Valoración Antropométrica Para Estimar La Masa De Personas Postradas En Cama Basado En Visión Por Computador, con la intención de hacer una primera versión de un instrumento que estime estatura, envergadura, altura a la rodilla, perímetros de brazo, pantorrilla, cintura; así como la masa corporal del paciente. El sistema se desarrolló bajo un escenario controlado en términos de iluminación, un prototipo de estructura que sostiene un sensor Kinect V2 a una altura determinada, para capturar la imagen RGB y en profundidad de un paciente acostado y procesarlas, logrando estimar las medidas mencionadas en el párrafo anterior.Submitted by Jorge Fayad Sierra (dte_jfayad304@pedagogica.edu.co) on 2021-10-28T03:28:41Z No. of bitstreams: 2 SISTEMA DE VALORACIÓN ANTROPOMÉTRICA.pdf: 3571932 bytes, checksum: d9bc9ea7983a01607bbe37c1d60ed23c (MD5) licencia_uso_trabajos_y_tesis_grado_.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Rejected by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co), reason: Cordial saludo Señor Fayad: Al realizar la primera revisión del registro y documentos anexos se encontraron varias inconsistencias que deben ser corregidas con el fin de poder aceptar el envío del registro y documentos anexos, por favor realizarlas lo más pronto posible: 1. En el Trabajo de grado en las portadas los títulos no son iguales (la 2da portada debe corregir el título tal como aparece en la 1ra portada), deben ser los mismos y completos en las portadas, en la Licencia de uso y en el registro del repositorio. 2. En el registro en el campo del título en español debe ser el mismo que está en la portada y termina en punto final, así: Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador. Nota: También para el campo del título traducido aplica la inconsistencia. 3. En el registro en las palabras claves corregir: Visión por Computador por Visión por computador y en las Keywords corregir: Computer Vision por Computer vision 4. En el registro debe colocar TODAS las referencias que señalaron en el Trabajo de grado que son 47 pero en el registro aparecen 46. on 2021-10-28T12:16:32Z (GMT)Submitted by Jorge Fayad Sierra (dte_jfayad304@pedagogica.edu.co) on 2021-10-28T15:41:23Z No. of bitstreams: 2 licencia_uso_trabajos_y_tesis_grado_.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5) SISTEMA DE VALORACIÓN ANTROPOMÉTRICA.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5)Rejected by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co), reason: Cordial saludo. El envío se devuelve. Nombre del archivo en minúscula SIN TILDES, ni espacios, ni caracteres especiales. Corregir el envío on 2021-10-30T00:14:42Z (GMT)Submitted by Jorge Fayad Sierra (dte_jfayad304@pedagogica.edu.co) on 2021-10-30T06:23:22Z No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Approved for entry into archive by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co) on 2021-10-31T00:46:57Z (GMT) No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Approved for entry into archive by Melissa Cuastuza (mcuastuza@pedagogica.edu.co) on 2021-11-02T20:43:34Z (GMT) No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5)Made available in DSpace on 2021-11-02T20:43:34Z (GMT). No. of bitstreams: 2 sistemadevaloracionantropometrica.pdf: 3572159 bytes, checksum: 924f4d6d47f9e59d67cb659715ffa619 (MD5) licenciausotrabajosytesisgrado.pdf: 161007 bytes, checksum: f6463ffcc45a87a68a942df7833a3396 (MD5) Previous issue date: 2021Licenciado en ElectrónicaPregradoThe subjective estimation of anthropometric measures, such as height and body mass in bedridden people, tends to have inaccuracies in the assessment of such magnitudes, hence, in some cases there are errors in drug formulation or parameterization of mechanical ventilators; this can put patients' lives at risk. Therefore, taking the benefits of computer vision, the project Anthropometric Estimation System for body Mass estimation to Bedridden People Based on Computer Vision is proposed, as an attempt to make a first version of an instrument that estimates stature, wingspan, height to the knee, arm, calf, waist perimeters; as well as the patient's body mass. The system was developed under a controlled scenario in terms of lighting, using the prototype of a structure that supports a Kinect V2 sensor at a certain height, to capture the RGB and depth images of a lying patient and process them, managing to estimate all measurements mentioned in the previous paragraph.application/pdfspaUniversidad Pedagógica NacionalLicenciatura en ElectrónicaFacultad de Ciencia y Tecnologíahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAntropometríaDecúbito supinoExactitudErrorKinectPrecisiónVisión por computadorAnthropometryErrorAccuracySupine decubitusKinectPrecisionComputer visionSistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.info:eu-repo/semantics/bachelorThesisTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisantropometría | Definición | Diccionario de la lengua española | RAE - ASALE. (n.d.). Retrieved September 5, 2021, from https://dle.rae.es/antropometríaCannon, C. P. (2000). Thrombolysis medication errors: benefits of bolus thrombolytic agents. The American Journal of Cardiology, 85(8), 17–22. https://doi.org/10.1016/S0002-9149(00)00874-2Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013a). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2Cook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013b). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2Cubison, T. C. S. (2005). So much for percentage, but what about the weight? Emerg Med J, 22, 643–645. https://doi.org/10.1136/emj.2003.011304Espa, E. (2003). Diccionario Mosby de Medicina , Enfermería y Ciencias de la Salud , 6a ed . Códex del Laboratorio Clínico . Indicaciones e interpretación de los exámenes de laboratorio. 1(2), 149–150. https://books.google.com/books/about/Diccionario_Mosby.html?hl=es&id=coYUp744m5kCFitriyah, H., & Edhi Setyaw, G. (2018a). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688Fitriyah, H., & Edhi Setyaw, G. (2018b). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688Forschungsberichte in Robotik, W., Schilling Nüchter, K. A., & Wuerzburg Research Notes, U. (n.d.). Christian Pfitzner Band 18 Visual Human Body Weight Estimation with Focus on Clinical Applications. https://opus.bibliothek.uni-wuerzburg.deGevers, T., & Smeulders, A. (2016). Foreword. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS, V. https://doi.org/10.1007/978-3-319-46493-0Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital Image Processing, Third Edition. Journal of Biomedical Optics, 14(2), 029901. https://doi.org/10.1117/1.3115362Jiang, M., & Guo, G. (2019a). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840Jiang, M., & Guo, G. (2019b). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840Khan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.355Kocabas, M., Athanasiou, N., & Black, M. J. (n.d.). VIBE: Video Inference for Human Body Pose and Shape Estimation. https://github.com/mkocabas/VIBEKocabas, M., Athanasiou, N., & Black, M. J. (2019). VIBE: Video inference for human body pose and shape estimation. ArXiv, 5253–5263.Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012a). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012b). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775Leibe, B., Matas, J., Sebe, N., & Welling, M. (Eds.). (2016). Computer Vision – ECCV 2016 (Vol. 9906). Springer International Publishing. https://doi.org/10.1007/978-3-319-46475-6Lifshitz, I., Fetaya, E., & Ullman, S. (2016). Human pose estimation using deep consensus voting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS, 246–260. https://doi.org/10.1007/978-3-319-46475-6_16Lin, C. B., Dong, Z., Kuan, W. K., & Huang, Y. F. (2021). A framework for fall detection based on openpose skeleton and lstm/gru models. Applied Sciences (Switzerland), 11(1), 1–20. https://doi.org/10.3390/app11010329Liu, Y., Sowmya, A., & Khamis, H. (2018a). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4), 1–22. https://doi.org/10.1371/journal.pone.0195600Lu, J. M., & Wang, M. J. J. (2008). Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications, 35(1–2), 407–414. https://doi.org/10.1016/j.eswa.2007.07.008Madrazo Pérez, M., & Torres Manrique, B. (n.d.). Gestión de los Servicios en EnfermeríaMinisterio de salud de Colombia. (2020, June 18). Se define valores de referencia a pagar por servicios UCI de covid-19. https://www.minsalud.gov.co/Paginas/Se-define-valores-de-referencia-a-pagar-por-servicios-UCI-de-covid-19.aspxPaar, A., Rüther, M., Bischof, H., Skrabal, F., Pirker, K., & Pichler, G. (2009). Human Body Volume Estimation in a Clinical Environment Combyn ECG Segmental Impedance Spectroscopy View project Glucose Monitoring View project Katrin Santner Human Body Volume Estimation in a Clinical Environment. https://www.researchgate.net/publication/228541158Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015a). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593Pfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015b). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593Pfitzner, C., May, S., & Nüchter, A. (2016). Neural network-based visual body weight estimation for drug dosage finding. Medical Imaging 2016: Image Processing, 9784(March), 97841Z. https://doi.org/10.1117/12.2216042Pfitzner, C., May, S., & Nüchter, A. (2017). Evaluation of Features from RGB-D Data for Human Body Weight Estimation. IFAC-PapersOnLine, 50(1), 10148–10153. https://doi.org/10.1016/j.ifacol.2017.08.1761Pfitzner, C., May, S., & Nüchter, A. (2018a). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311Pfitzner, C., May, S., & Nüchter, A. (2018b). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311Pirker, K., & Matthias, R. (2009). Human Body Volume Estimation in a Clinical Environment. May 2014.PROCESO DE PRESTACION DE LOS SERVICIOS SOCIALES ETAPA PARA PRESTAR SERVICIOS SOCIALES INTEGRALES PROCEDIMIENTO DEL SISTEMA DE VIGILANCIA NUTRICIONAL INSTRUCTIVO PARA LA TOMA Y REGISTRO DE MEDIDAS ANTROPOMETRICAS DE LOS ADULTOS Y LAS ADULTAS CON DISCAPACIDAD Y DIFICULTAD PARA ASUMIR LA BIPEDESTACIÓN. (n.d.). Retrieved September 1, 2021, from www.integracionsocial.gov.coResolución Número 914 De 2020. (n.d.). https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución No. 914 de 2020.pdfS, M., & AM, K. (2005). How accurate is weight estimation in the emergency department? Emergency Medicine Australasia : EMA, 17(2), 113–116. https://doi.org/10.1111/J.1742-6723.2005.00701.XSeo, D., Kang, E., Kim, Y. mi, Kim, S. Y., Oh, I. S., & Kim, M. G. (2020). SVM-based waist circumference estimation using Kinect. Computer Methods and Programs in Biomedicine, 191, 105418. https://doi.org/10.1016/j.cmpb.2020.105418Servicios sanitarios de calidad. (n.d.). Retrieved September 4, 2021, from https://www.who.int/es/news-room/fact-sheets/detail/quality-health-servicesSpencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. In Engineering (Vol. 5, Issue 2). https://doi.org/10.1016/j.eng.2018.11.030Stancic, I., Cecić, M., & Supuk, T. (n.d.). Computer vision system for human anthropometric parameters estimation Computer vision in kinematic analysis of sports activities View project Smartbots-Autonomous Control of Mobile Robots Using Computer Vision Algorithms and Modern Neural Network Architec. https://www.researchgate.net/publication/228667014Stančić, I., Musić, J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement: Journal of the International Measurement Confederation, 46(1), 716–726. https://doi.org/10.1016/j.measurement.2012.09.010Stancic, I., Supuk, T., & Cecic, M. (2009). Computer vision system for human anthropometric parameters estimation. WSEAS Transactions on Systems, 8(3), 430–439.Uhm, T., Park, H., & Park, J. Il. (2015). Fully vision-based automatic human body measurement system for apparel application. Measurement: Journal of the International Measurement Confederation, 61, 169–179. https://doi.org/10.1016/j.measurement.2014.10.044Velardo, C., & Dugelay, J. L. (2010). Weight estimation from visual body appearance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634540Velardo, C., & Dugelay, J. L. (2012). What can computer vision tell you about your weight? European Signal Processing Conference, November, 1980–1984.Wang, L., Li, D., Zhu, Y., Tian, L., & Shan, Y. (n.d.). Dual Super-Resolution Learning for Semantic Segmentation.Liu, Y., Sowmya, A., & Khamis, H. (2018b). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195600THUMBNAILsistemadevaloracionantropometrica.pdf.jpgsistemadevaloracionantropometrica.pdf.jpgIM Thumbnailimage/jpeg3640http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/10/sistemadevaloracionantropometrica.pdf.jpg212525a118897ab03d18e9a2d7981791MD510LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58202103650159573-27OCT2021 JORGE FAYAD.pdf202103650159573-27OCT2021 JORGE FAYAD.pdfLICENCIA APROBADAapplication/pdf161007http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/9/202103650159573-27OCT2021%20JORGE%20FAYAD.pdff6463ffcc45a87a68a942df7833a3396MD59ORIGINALsistemadevaloracionantropometrica.pdfsistemadevaloracionantropometrica.pdfapplication/pdf3572159http://repository.pedagogica.edu.co/bitstream/20.500.12209/16555/6/sistemadevaloracionantropometrica.pdf924f4d6d47f9e59d67cb659715ffa619MD5620.500.12209/16555oai:repository.pedagogica.edu.co:20.500.12209/165552021-11-03 23:02:06.97Repositorio Institucional Universidad Pedagógica Nacionalrepositorio@pedagogica.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=