Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno.
En el presente trabajo de grado se realiza un análisis histórico del origen de la ecuación de Dirac a partir del fenómeno de la estructura fina del átomo de hidrógeno. Este análisis establece un vínculo entre el contexto histórico, los aspectos conceptuales, y los resultados experimentales y matemát...
- Autores:
-
Duarte Bernal, Joan Leonardo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Pedagógica Nacional
- Repositorio:
- Repositorio Institucional UPN
- Idioma:
- spa
- OAI Identifier:
- oai:repository.pedagogica.edu.co:20.500.12209/19815
- Acceso en línea:
- http://hdl.handle.net/20.500.12209/19815
- Palabra clave:
- Ecuación de Dirac
Estructura fina del hidrógeno
Mecánica cuántica
Relatividad especial
Espín
Electrón
Dirac equation
Fine structure of hydrogen
Quantum mechanics
Special relativity
Spin
Electron
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
RPEDAGO2_b3e8ae2e67e0e2970950d1a59eee70a9 |
---|---|
oai_identifier_str |
oai:repository.pedagogica.edu.co:20.500.12209/19815 |
network_acronym_str |
RPEDAGO2 |
network_name_str |
Repositorio Institucional UPN |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. |
dc.title.translated.eng.fl_str_mv |
Historical analysis of the origin of the Dirac equation, based on its relation to the fine structure of hydrogen. |
title |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. |
spellingShingle |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. Ecuación de Dirac Estructura fina del hidrógeno Mecánica cuántica Relatividad especial Espín Electrón Dirac equation Fine structure of hydrogen Quantum mechanics Special relativity Spin Electron |
title_short |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. |
title_full |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. |
title_fullStr |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. |
title_full_unstemmed |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. |
title_sort |
Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno. |
dc.creator.fl_str_mv |
Duarte Bernal, Joan Leonardo |
dc.contributor.advisor.spa.fl_str_mv |
Cruz Bonilla, Yesid Javier |
dc.contributor.author.none.fl_str_mv |
Duarte Bernal, Joan Leonardo |
dc.subject.spa.fl_str_mv |
Ecuación de Dirac Estructura fina del hidrógeno Mecánica cuántica Relatividad especial Espín Electrón |
topic |
Ecuación de Dirac Estructura fina del hidrógeno Mecánica cuántica Relatividad especial Espín Electrón Dirac equation Fine structure of hydrogen Quantum mechanics Special relativity Spin Electron |
dc.subject.keywords.eng.fl_str_mv |
Dirac equation Fine structure of hydrogen Quantum mechanics Special relativity Spin Electron |
description |
En el presente trabajo de grado se realiza un análisis histórico del origen de la ecuación de Dirac a partir del fenómeno de la estructura fina del átomo de hidrógeno. Este análisis establece un vínculo entre el contexto histórico, los aspectos conceptuales, y los resultados experimentales y matemáticos obtenidos por los físicos de finales del siglo XIX e inicios del siglo XX, en relación con la necesidad de una ecuación como la de Dirac. Gracias a esto, se genera una aproximación a una ecuación relativista de la mecánica cuántica, específicamente a la deducida por Paul Dirac. Permitiendo acercar al lector, a uno de los fenómenos de desdoblamiento presentes en los niveles de energía del átomo de hidrógeno, así como al estudio del espín del electrón desde una perspectiva relativista. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-25T15:31:29Z |
dc.date.available.none.fl_str_mv |
2024-06-25T15:31:29Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12209/19815 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Pedagógica Nacional |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional de la Universidad Pedagógica Nacional |
dc.identifier.repourl.none.fl_str_mv |
repourl: http://repositorio.pedagogica.edu.co/ |
url |
http://hdl.handle.net/20.500.12209/19815 |
identifier_str_mv |
instname:Universidad Pedagógica Nacional reponame:Repositorio Institucional de la Universidad Pedagógica Nacional repourl: http://repositorio.pedagogica.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
A.Herman, & K.Meyenn. (22 de Noviembre de 1979). Wolfang Pauli scientific correspondence with BOHR, EINSTEIN,HEISENBERG U.A (Vols. 1:1919-1929). Hamburgo: Springer-Verlag. https://link.springer.com/book/10.1007/978-3-540-78798-3 A.Sommerfeld. (1916a). Zur Quantentheorie der Spektrallinien. Annalen der Physik(17). https://doi.org/10.1002/andp.19163561702 A.Sommerfeld. (1916b). The fine structure of Hydrogen and Hydrogen-like lines. the european physical journal. https://doi.org/10.1140/epjh/e2013-40054-0 A.Sommerfeld. (1919). Atomic structure and spectral lines (Tercera ed., Vol. 1). Traduccion del aleman por Henry L.Brose. Methuen Publishing. A.Sommerfeld. (1926). The collected papers of albert einstein-Universidad de princeton. Volume 15: The Berlin Years: Writings & Correspondence, June 1925-May 1927. (English Translation Supplement): https://einsteinpapers.press.princeton.edu/vol15-trans/377 A.Sommerfeld. (1940). Zur Feinstruktur der Wasserstofflinien. Geschichte und gegenwärtiger Stand der Theorie. Naturwissenschaften 28. https://doi.org/10.1007/BF01490583 Abhang, R. Y. (2005). Making introductory quantum physics understandable and interesting. Maharashlra, india. Abraham Pais, M. J. (1998). PAUL DIRAC THE MAN AND HIS WORK. Cambridge University Press. Albert A. Michelson. (1892). On the Application of Interference Methods to Spectroscopic Measurements II. Philosophical Magazine. https://doi.org/10.1080/14786449208620318 Angstrom, A. (1861). Ueber die Fraunhofer'schen Linien im Sonnenspectrum. annalen der physik. https://doi.org/10.1002/andp.18621931007 Arthur Compton. (1926). X-Rays in theory and experiment. D Van Nostrand Company Ltd New York. Atkins, P. (2006). Physical Chemistry. W.H. Freeman. Ayala, M. M. (2006). Los anlisis histrico criticos y la recontextualizacion de saberes cientificos. Balmer, J. J. (1885). Nota sobre las líneas espectrales del hidrógeno. Verhandlungen der Naturforschenden Gesellschaft in Basel, 548-560. https://www.biodiversitylibrary.org/item/42693#page/560/mode/1up Beléndez, A. (24 de Julio de 2017). Sommerfeld: el eterno candidato al Nobel. OpenMind BBVA: https://www.bbvaopenmind.com/ciencia/grandes-personajes/sommerfeld-el-eterno-candidato-al-nobel/ Biedenharn, L. C. (1982). The "Sommerfeld Puzzle" Revisited and Resolved. Foundations of Physics, 13(1). https://doi.org/10.1007/BF01889408 Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine Series 6. https://doi.org/10.1080/14786441308634955 Bohr, N. (1915). On the series spectrum of hydrogen and the structure of the atom. Philosophical Magazine. https://doi.org/10.1080/14786440208635311 Brown, R. G. (2007). Thomas Precession. Duke University: https://webhome.phy.duke.edu/~rgb/Class/phy319/phy319/node134.html Bucher, M. (2008). Rise and premature fall of the old quantum theory. Physics Dept., Cal. State Univ.: https://arxiv.org/pdf/0802.1366.pdf Carretero, J. A. (2013). Dirac. La antimateria. El reflejo oscuro de la materia. Villatuerta: Editec. Chodos, A. (2010). This Month in Physics History: October 18, 1933: Louis de Broglie elected to Academy. AMERICAN PHYSICAL SOCIETY. https://www.aps.org/publications/apsnews/201010/physicshistory.cfm Commins, E. D. (2012). Electron Spin and Its History. Annual Review of Nuclear and Particle Science. https://doi.org/10.1146/annurev-nucl-102711-094908 Compton, A. H. (1923). A Quantum Theory of the Scattering of X-rays by Light Elements. Phys. Rev., 21(5). https://doi.org/10.1103/PhysRev.21.483 Dalitz, R. (2022). cerncourier. Paul Dirac: a genius in the history of physics: https://cerncourier.com/a/paul-dirac-a-genius-in-the-history-of-physics/ Darrigol, O. (1992). From c-Numbers to q- Numbers. UNIVERSITY OF CALIFORNIA PRESS. Darwin, C. (1920). The dynamical motions of charged particles. Philosophical Magazine Series 6. https://doi.org/10.1080/14786440508636066 Darwin, C. (1927). The Electron as a Vector Wave. Proc. R. Soc. Lond. (116), 227-253. https://doi.org/10.1098/rspa.1927.0134 Darwin., C. G. (1928). The Wave Equations of the Electron. Proceedings of the Royal Society. https://doi.org/10.1098/rspa.1928.0076 de Broglie, L. (1924). Researches on the Quantum Theory. Tesis. https://fondationlouisdebroglie.org/LDB-oeuvres/De_Broglie_Kracklauer.pdf Dietterich, S. (2018). Dietterich Labs. Mathematical and physics channel.: https://www.youtube.com/@DietterichLabs Dirac, P. A. (1925). The fundamental equations of quantum mechanics. Royal Society. https://doi.org/10.1098/rspa.1925.0150 Dirac, P. A. (05 de 1926a). Quantum mechanics. Thesis for Ph. D. https://diginole.lib.fsu.edu/islandora/object/fsu%3A641 Dirac, P. A. (1926b). On the theory of quantum mechanics. Royal Society. https://doi.org/10.1098/rspa.1926.0133 Dirac, P. A. (1927a). The physical interpretation of the quantum dynamics. Royal Society. https://doi.org/10.1098/rspa.1927.0012 Dirac, P. A. (1927b). The quantum theory of the emission and absorption of radiation. Royal Society. https://doi.org/10.1098/rspa.1927.0039 Dirac, P. A. (1928a). The quantum theory of the electron. Proceedings of the Royal Society of London. https://doi.org/10.1098/rspa.1928.0023 Dirac, P. A. (1928b). The quantum theory of the Electron. Part II. The Royal Society. https://doi.org/10.1098/rspa.1928.0056 Dirac, P. A. (1930a). A theory of electrons and protons. Proc. R. Soc. Lond. https://doi.org/10.1098/rspa.1930.0013 Dirac, P. A. (1930b). The Principles of Quantum Mechanics. Oxford University Press. Dirac, P. A. (06 de 05 de 1963). Entrevista. (T. S. Kuhn, Entrevistador) https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4575-2 Dirac, P. A. (15 de Abril de 1975). The history of the positron. Roma. https://lamediateca.infn.it/mediateca/view.php?v=227 Dirac, P. A. (1977). History of twentieth century physics. Recollections of an Exciting era. Tallahassee, Florida: Edited by C. Weiner. Eckart, C. (1926). The Hydrogen Spectrum in the New Quantum Theory. Phys. Rev.(28). https://doi.org/10.1103/PhysRev.28.927 Einstein,1916. (s.f.). The collected papers of albert einstein-Universidad de princeton. Volume 8: The Berlin Years: Correspondence, 1914-1918 (English translation supplement): https://einsteinpapers.press.princeton.edu/vol8-trans/269 Farmelo, G. (2009a). The strangest man. The hidden life of PAUL DIRAC. Basic Books Farmelo, G. (2009b). Did Dirac predict the positron? Contemporary Physics. https://doi.org/10.1080/00107510903217214 Feynman, R. P. (1987). The reason for antiparticles. Cambridge University Press. https://doi.org/10.1017/CBO9781107590076.002 Fock, V. (1926). Zur Schrödingerschen Wellenmechanik. Z. Physik, 242-250. https://doi.org/10.1007/BF01399113 Forero, S. M. (2014). Sadi Carnot y la segunda Ley de la Termodinámica. La historia de la ciencia como pedagogía natural. http://hdl.handle.net/20.500.12209/81 G.F. Bassan, M. Inguscio, T.W. Hilnsct. (1989). The Hydrogen Atom (An Historical Account of Studies of Its Spectrum). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88421-4_1 Galili, I. (2008). HISTORY OF PHYSICS AS A TOOL FOR TEACHING. The Hebrew University of Jerusalem Garay, F. R. (2011). Perspectivas de historia y contexto cultural en la enseñanza de las ciencias: Discusiones para los procesos de enseñanza y aprendizaje. Ciência & Educação. Garcia, J. (2015). PAUL DIRAC. Parte 2: ¿Cómo llegó Dirac a su ecuación? Aula 141. https://www.youtube.com/watch?v=BI5udYKvSts GIilbert N. Lewis y Frank H. Spedding. (1933). A Spectroscopic Search for H3 in Concentrated H2. Physical Review. https://doi.org/10.1103/PhysRev.43.964 Gordon, W. (1928). Paul A.M. Dirac Collection. Letter to Dr. Dirac, January 13, 1928: https://diginole.lib.fsu.edu/islandora/object/fsu%3A585359 Goudsmit, S. (1971). The discovery of the electron spin. https://www.lorentz.leidenuniv.nl/history/spin/goudsmit.html Goudsmit, Uhlenbeck. (1926). Spinning Electrons and the Structure of Spectra. Nature(117), 264-265. https://doi.org/10.1038/117264a0 Heilbron, J. L. (1968). Quantum Historiography and the Archive for History of Quantum Physics. History of Science, 7. https://doi.org/10.1177/007327536800700103 Heisenberg. (13 de Febrero de 1928). Letter to Dr. Dirac, February 13, 1928, page 1. https://diginole.lib.fsu.edu/islandora/object/fsu%3A585353 Heisenberg, W. (1922). Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneflekte. Z. Physik (8), 273-297. https://doi.org/10.1007/BF01329602 Heisenberg, W. (1925). Niels Bohr Library & Archives. Correspondencia de Heisenberg y Goudsmit: https://repository.aip.org/islandora/object/nbla:285444#page/36/mode/1up Hernández, C. G. (2018). Sobre la importancia de axiomatizar la mecánica newtoniana haciendo uso del formalismo matemático de Von Neumann para la enseñanza de la mecanica cuantica. Bogota: Universidad pedagogica nacional Hoyer, U. (1981). Work on Atomic Physics (1912 - 1917). North Holland. Instituto Nacional de Astrofísica, Ó. y. (s.f.). Imagen del efecto Zeeman normal y anómalo. https://slideplayer.es/amp/13021847 Jagdish, M., & Helmut, R. (1982). The historical development of quantum theory (Vol. 3). Springer. Jammer, M. (1989). The conceptual development of quantum mechanics. Tomash Publishers. Klein, O. (1926). Quantentheorie und funfdimensionale Relativitatstheorie. Zeitschrift für Physik, 895–906. https://doi.org/10.1007/BF01397481 Kragh, H. (1981). The Genesis of Dirac's Relativistic Theory . Springer-Verlag. Kragh, H. (1984). Equation with the many fathers. The Klein-Gordon equation in 1926. American journal of physics, 1024-1032. http://dx.doi.org/10.1119/1.13782 Kragh, H. (1985). The Fine Structure of Hydrogen and the Gross Structure of the Physics Community. Historical Studies in the Physical Sciences, 15(2). https://doi.org/10.2307/27757550 Kragh, H. (1990). Dirac_ A scientific biography. Cambridge Uaiversity Press. Kragh, H. (1992). A Sense of History: History of Science and the Teaching of Introductory Quantum Theory. Science and education , 349-363. https://doi.org/10.1007/BF00430962 Kragh, H. (2012). Niels Bohr and the quantum atom. Oxford university press. Lancaster, T., & Blundell, S. (2014). Quantum field theory for the Gifted Amateur. Oxford university press Littlejohn, R. G. (2021). Solutions of the Dirac Equation and Their Properties. University Of California Berkeley: https://bohr.physics.berkeley.edu/classes/221/notes/spdirac.pdf M D’Anna y T Corridoni. (2018). Measuring the Separation of the Sodium D-doubletwith a Michelson Interferometer. European Physical Society. https://doi.org/10.1088/1361-6404/aa8e76 M, Massimi. (2005). From the old quantum theory to the new quantum theory: reconsidering Kuhn’s incommensurability. Cambridge University Press, 78-111. https://doi.org/10.1017/CBO9780511535352.007 M. Born, W.Heisenberg ,P.Jordan. (1925). On quantum mechanics II. Z.Phys.(35). http://fisica.ciens.ucv.ve/~svincenz/SQM333.pdf Mascart, M. (1869). Surles spectres ultra-violets. Comptes Rendus 69, 338. https://www.biodiversitylibrary.org/item/23684#page/344/mode/1up Mesa, J. B. (2011). ESPECTROS ATOMICOS. ATOMO HIDROGENO. Departamento de fisica- UNIVERSIDAD MILITAR NUEVA GRANADA. Michelson, A., & Morley, E. (1887). On a method of making the wavelength of sodium light the actual and practical standard of length. American Journal of Science. https://doi.org/10.2475/ajs.s3-34.204.427 Museum, D. (2023). Tools of cosmology [Imagen]. https://history.aip.org/exhibits/cosmology/tools/pic-spectroscopy-fraunhofer-spectrum.htm Nicholson, J. (1912). The constitution of the solar corona III. Monthly notices of the royal astronomical society, LXXII. https://doi.org/10.1093/mnras/72.9.729 Oppenheimer, J. R. (1927). Letter to Dr. Dirac. https://diginole.lib.fsu.edu/islandora/object/fsu:585187 Orozco, J. C. (2005). ATAJOS Y DESVIACIONES. LOS ESTUDIOS HISTÓRICO-CRÍTICOS Y LA ENSEÑANZA DE LAS CIENCIAS. Physics Forums. (2013). Undergraduate-level explanation of Dirac Equation. https://www.physicsforums.com/threads/undergraduate-level-explanation-of-dirac-equation.695379/ Planck, M. (1920). Max Planck nobel lecture . The Genesis and Present State of Development of the Quantum Theory. https://www.nobelprize.org/prizes/physics/1918/planck/lecture/ Popa, S. (2023). Physicists measure the electron electric dipole moment to unprecedented precision. Physics World. https://physicsworld.com/a/physicists-measure-the-electron-electric-dipole-moment-to-unprecedented-precision/ Prasad, R. (2023). Advanced Physics . Advanced Physics channel . Purcell, E. M., & Ramsey, N. F. (1950). On the Possibility of Electric Dipole Moments for Elementary Particles and Nuclei. PHYSICAL REVIEW JOURNALS ARCHIVE. https://doi.org/10.1103/PhysRev.78.807 Rajasekaran, G. (2003). The Discovery of Dirac Equation and its Impact on Present-day Physics. Reson, 8, 59-74. https://doi.org/10.1007/BF02866760 Richter, C. F. (1927). The Hydrogen Atom with a Spinning Electron in Wave Mechanics. National Academy of Sciences. https://www.jstor.org/stable/84949 Roorkee, I. (2018). Lecture 25 : Michelson Interferometer and Its Applications - II. https://www.youtube.com/watch?v=jSCSgzhIRbs&t=623s Rosenfeld, L. (1963). Entrevista de Leon Rosenfeld con Thomas Khun. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4847-1 Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem. Annalen der Physik, 384, 273-376. https://doi.org/10.1002/andp.19263840404 Schrödinger, E. (1926b). An Undulatory theory of the mechanics of atoms and molecules. Physical Review. https://doi.org/10.1103/PhysRev.28.1049 Schwartz, M. (2016). Diffraction and resolution. Scholars harvard: https://scholar.harvard.edu/files/schwartz/files/lecture19-diffraction.pdf Siegbahn, M. (1916). Relations between the K and L Series of the High-Frequency Spectra. Nature, 676. https://doi.org/10.1038/096676b0 Stoney, G. (1871). On the cause of the interrupted spectra of gases. Philosophical Maga, 291-296. https://www.jstor.org/stable/20540925 Thomas, L. H. (1926). The Motion of the Spinning Electron. Nature, 117. https://doi.org/10.1038/117514a0 Uhlenbeck, G. Goudsmit, S. (1925). Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Die Naturwissenschaften. https://doi.org/10.1007/BF01558878 Universitat wien . (s.f.). Schrödinger, Erwin: Notizen mit der Überschrift "H-Atom, Eigenschwingungen". https://fedora.phaidra.univie.ac.at/fedora/objects/o:164829/methods/bdef:Book/view?language=en# Villatoro, F. (6 de Enero de 2013). La ciencia de la mula francis . Nota dominical: Qué es el espín de una partícula: https://francis.naukas.com/2013/01/06/nota-dominical-que-es-el-espin-de-una-particula/ W. Gerlach, O. Stern. (1922). Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Z. Physik 8. https://doi.org/10.1007/BF01329580 W. Heisenberg, P. Jordan. (1926). Application of quantum mechanics to the problem of the anomalous Zeeman effect. Zeit. Phys(37), 263-277. https://doi.org/10.1007/BF01397100 W.Pauli. (1925a). Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. 776. https://doi.org/10.1007/BF02980631 W.Pauli. (1925b). Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt. Zeitschrift für Physik, 373-385. https://doi.org/10.1007/BF02980592 W.Pauli. (1926). ON THE HYDROGEN SPECTRUM FROM THE STANDPOINT OF THE NEW QUANTUM MECHANICS. 414. https://www.informationphilosopher.com/solutions/scientists/pauli/H_Spectrum_Pauli.pdf W.Pauli. (1927). Zur Quantenmechanik des magnetischen Elektrons. Z. Physik(43), 601–623. https://doi.org/10.1007/BF01397326 W.Pauli. (1946). Remarks on the History of the Exclusion Principle. Science, 103(2669), 213-215. https://www.jstor.org/stable/1673346 Wentzel, V. G. (1926). Die mehrfach periodischen Systeme in der Quanten mechanik. Z. Physik , 80-94. https://doi.org/10.1007/BF01397309 Wolfgang Fleischer, G. S. (1984). Bound State Solutions of the Klein-Gordon Equation for Strong Potentials. Zeitschrift für Naturforschung A, 39, 703-719. https://doi.org/10.1515/zna-1984-0801 Zemax. (2021). How to build a spectrometer - theory. https://support.zemax.com/hc/en-us/articles/1500005578762-How-to-build-a-spectrometer-theory |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.none.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Attribution-NonCommercial-NoDerivatives 4.0 International |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Pedagógica Nacional |
dc.publisher.program.spa.fl_str_mv |
Licenciatura en Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencia y Tecnología |
dc.source.spa.fl_str_mv |
reponame:Repositorio Institucional de la Universidad Pedagógica Nacional instname:Universidad Pedagógica Nacional |
instname_str |
Universidad Pedagógica Nacional |
institution |
Universidad Pedagógica Nacional |
reponame_str |
Repositorio Institucional de la Universidad Pedagógica Nacional |
collection |
Repositorio Institucional de la Universidad Pedagógica Nacional |
bitstream.url.fl_str_mv |
http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/7/analisis%20historico%20del%20origen%20de%20la%20ecuaci%c3%b3n%20Dirac.pdf.jpg http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/5/license.txt http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/6/202403600095003-31%20MAY%2024%20JOHAN%20DUARTE.pdf http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/4/analisis%20historico%20del%20origen%20de%20la%20ecuaci%c3%b3n%20Dirac.pdf |
bitstream.checksum.fl_str_mv |
d08ab1e20628a2c1142f04b206a06e06 8a4605be74aa9ea9d79846c1fba20a33 cd115a471e3d80f6b3f171379f67baed 6b21486c16844d5efceae374b5839baa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Pedagógica Nacional |
repository.mail.fl_str_mv |
repositorio@pedagogica.edu.co |
_version_ |
1814445291743477760 |
spelling |
Cruz Bonilla, Yesid JavierDuarte Bernal, Joan Leonardo2024-06-25T15:31:29Z2024-06-25T15:31:29Z2024http://hdl.handle.net/20.500.12209/19815instname:Universidad Pedagógica Nacionalreponame:Repositorio Institucional de la Universidad Pedagógica Nacionalrepourl: http://repositorio.pedagogica.edu.co/En el presente trabajo de grado se realiza un análisis histórico del origen de la ecuación de Dirac a partir del fenómeno de la estructura fina del átomo de hidrógeno. Este análisis establece un vínculo entre el contexto histórico, los aspectos conceptuales, y los resultados experimentales y matemáticos obtenidos por los físicos de finales del siglo XIX e inicios del siglo XX, en relación con la necesidad de una ecuación como la de Dirac. Gracias a esto, se genera una aproximación a una ecuación relativista de la mecánica cuántica, específicamente a la deducida por Paul Dirac. Permitiendo acercar al lector, a uno de los fenómenos de desdoblamiento presentes en los niveles de energía del átomo de hidrógeno, así como al estudio del espín del electrón desde una perspectiva relativista.Submitted by Joan Leonardo Duarte Bernal (jlduarteb@upn.edu.co) on 2024-05-31T20:43:59Z No. of bitstreams: 2 Análisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno.pdf: 3336889 bytes, checksum: 6b21486c16844d5efceae374b5839baa (MD5) licencia_uso_trabajos_y_tesis_grado_.pdf: 361061 bytes, checksum: cd115a471e3d80f6b3f171379f67baed (MD5)Rejected by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co), reason: el nombre del archivo en PDF del trabajo de grado esta muy extenso, este no debe tener comas ni tildes, se recomienda dejarlo de la siguiente manera "analisis historico del origen de la ecuación Dirac". on 2024-06-11T15:57:58Z (GMT)Submitted by Joan Leonardo Duarte Bernal (jlduarteb@upn.edu.co) on 2024-06-11T16:42:20Z No. of bitstreams: 2 licencia_uso_trabajos_y_tesis_grado_.pdf: 361061 bytes, checksum: cd115a471e3d80f6b3f171379f67baed (MD5) analisis historico del origen de la ecuación Dirac.pdf: 3336889 bytes, checksum: 6b21486c16844d5efceae374b5839baa (MD5)Approved for entry into archive by Biblioteca UPN (repositoriobiblioteca@pedagogica.edu.co) on 2024-06-11T18:12:50Z (GMT) No. of bitstreams: 2 licencia_uso_trabajos_y_tesis_grado_.pdf: 361061 bytes, checksum: cd115a471e3d80f6b3f171379f67baed (MD5) analisis historico del origen de la ecuación Dirac.pdf: 3336889 bytes, checksum: 6b21486c16844d5efceae374b5839baa (MD5)Approved for entry into archive by Elsy Carolina Martínez (ecmartinezb@pedagogica.edu.co) on 2024-06-25T15:31:29Z (GMT) No. of bitstreams: 2 licencia_uso_trabajos_y_tesis_grado_.pdf: 361061 bytes, checksum: cd115a471e3d80f6b3f171379f67baed (MD5) analisis historico del origen de la ecuación Dirac.pdf: 3336889 bytes, checksum: 6b21486c16844d5efceae374b5839baa (MD5)Made available in DSpace on 2024-06-25T15:31:29Z (GMT). No. of bitstreams: 2 licencia_uso_trabajos_y_tesis_grado_.pdf: 361061 bytes, checksum: cd115a471e3d80f6b3f171379f67baed (MD5) analisis historico del origen de la ecuación Dirac.pdf: 3336889 bytes, checksum: 6b21486c16844d5efceae374b5839baa (MD5) Previous issue date: 2024Licenciado en FísicaPregradoIn this work, a historical analysis of the origin of the Dirac equation is conducted, based on the phenomenon of the fine structure of the hydrogen atom. This analysis establishes a connection between the historical context, the conceptual aspects, and the experimental and mathematical results obtained by physicists in the late 19th and early 20th centuries, in relation to the need for an equation like Dirac's. This generates an approximation to a relativistic equation in quantum mechanics, specifically the one deduced by Paul Dirac. It allows the reader to approach one of the phenomena of splitting present in the energy levels of the hydrogen atom, as well as the study of electron spin from a relativistic perspective.application/pdfspaUniversidad Pedagógica NacionalLicenciatura en FísicaFacultad de Ciencia y Tecnologíahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 Internationalreponame:Repositorio Institucional de la Universidad Pedagógica Nacionalinstname:Universidad Pedagógica NacionalEcuación de DiracEstructura fina del hidrógenoMecánica cuánticaRelatividad especialEspínElectrónDirac equationFine structure of hydrogenQuantum mechanicsSpecial relativitySpinElectronAnálisis histórico del origen de la ecuación de Dirac, a partir de su relación con la estructura fina del hidrógeno.Historical analysis of the origin of the Dirac equation, based on its relation to the fine structure of hydrogen.info:eu-repo/semantics/bachelorThesisTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisA.Herman, & K.Meyenn. (22 de Noviembre de 1979). Wolfang Pauli scientific correspondence with BOHR, EINSTEIN,HEISENBERG U.A (Vols. 1:1919-1929). Hamburgo: Springer-Verlag. https://link.springer.com/book/10.1007/978-3-540-78798-3A.Sommerfeld. (1916a). Zur Quantentheorie der Spektrallinien. Annalen der Physik(17). https://doi.org/10.1002/andp.19163561702A.Sommerfeld. (1916b). The fine structure of Hydrogen and Hydrogen-like lines. the european physical journal. https://doi.org/10.1140/epjh/e2013-40054-0A.Sommerfeld. (1919). Atomic structure and spectral lines (Tercera ed., Vol. 1). Traduccion del aleman por Henry L.Brose. Methuen Publishing.A.Sommerfeld. (1926). The collected papers of albert einstein-Universidad de princeton. Volume 15: The Berlin Years: Writings & Correspondence, June 1925-May 1927. (English Translation Supplement): https://einsteinpapers.press.princeton.edu/vol15-trans/377A.Sommerfeld. (1940). Zur Feinstruktur der Wasserstofflinien. Geschichte und gegenwärtiger Stand der Theorie. Naturwissenschaften 28. https://doi.org/10.1007/BF01490583Abhang, R. Y. (2005). Making introductory quantum physics understandable and interesting. Maharashlra, india.Abraham Pais, M. J. (1998). PAUL DIRAC THE MAN AND HIS WORK. Cambridge University Press.Albert A. Michelson. (1892). On the Application of Interference Methods to Spectroscopic Measurements II. Philosophical Magazine. https://doi.org/10.1080/14786449208620318Angstrom, A. (1861). Ueber die Fraunhofer'schen Linien im Sonnenspectrum. annalen der physik. https://doi.org/10.1002/andp.18621931007Arthur Compton. (1926). X-Rays in theory and experiment. D Van Nostrand Company Ltd New York.Atkins, P. (2006). Physical Chemistry. W.H. Freeman.Ayala, M. M. (2006). Los anlisis histrico criticos y la recontextualizacion de saberes cientificos.Balmer, J. J. (1885). Nota sobre las líneas espectrales del hidrógeno. Verhandlungen der Naturforschenden Gesellschaft in Basel, 548-560. https://www.biodiversitylibrary.org/item/42693#page/560/mode/1upBeléndez, A. (24 de Julio de 2017). Sommerfeld: el eterno candidato al Nobel. OpenMind BBVA: https://www.bbvaopenmind.com/ciencia/grandes-personajes/sommerfeld-el-eterno-candidato-al-nobel/Biedenharn, L. C. (1982). The "Sommerfeld Puzzle" Revisited and Resolved. Foundations of Physics, 13(1). https://doi.org/10.1007/BF01889408Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine Series 6. https://doi.org/10.1080/14786441308634955Bohr, N. (1915). On the series spectrum of hydrogen and the structure of the atom. Philosophical Magazine. https://doi.org/10.1080/14786440208635311Brown, R. G. (2007). Thomas Precession. Duke University: https://webhome.phy.duke.edu/~rgb/Class/phy319/phy319/node134.htmlBucher, M. (2008). Rise and premature fall of the old quantum theory. Physics Dept., Cal. State Univ.: https://arxiv.org/pdf/0802.1366.pdfCarretero, J. A. (2013). Dirac. La antimateria. El reflejo oscuro de la materia. Villatuerta: Editec.Chodos, A. (2010). This Month in Physics History: October 18, 1933: Louis de Broglie elected to Academy. AMERICAN PHYSICAL SOCIETY. https://www.aps.org/publications/apsnews/201010/physicshistory.cfmCommins, E. D. (2012). Electron Spin and Its History. Annual Review of Nuclear and Particle Science. https://doi.org/10.1146/annurev-nucl-102711-094908Compton, A. H. (1923). A Quantum Theory of the Scattering of X-rays by Light Elements. Phys. Rev., 21(5). https://doi.org/10.1103/PhysRev.21.483Dalitz, R. (2022). cerncourier. Paul Dirac: a genius in the history of physics: https://cerncourier.com/a/paul-dirac-a-genius-in-the-history-of-physics/Darrigol, O. (1992). From c-Numbers to q- Numbers. UNIVERSITY OF CALIFORNIA PRESS.Darwin, C. (1920). The dynamical motions of charged particles. Philosophical Magazine Series 6. https://doi.org/10.1080/14786440508636066Darwin, C. (1927). The Electron as a Vector Wave. Proc. R. Soc. Lond. (116), 227-253. https://doi.org/10.1098/rspa.1927.0134Darwin., C. G. (1928). The Wave Equations of the Electron. Proceedings of the Royal Society. https://doi.org/10.1098/rspa.1928.0076de Broglie, L. (1924). Researches on the Quantum Theory. Tesis. https://fondationlouisdebroglie.org/LDB-oeuvres/De_Broglie_Kracklauer.pdfDietterich, S. (2018). Dietterich Labs. Mathematical and physics channel.: https://www.youtube.com/@DietterichLabsDirac, P. A. (1925). The fundamental equations of quantum mechanics. Royal Society. https://doi.org/10.1098/rspa.1925.0150Dirac, P. A. (05 de 1926a). Quantum mechanics. Thesis for Ph. D. https://diginole.lib.fsu.edu/islandora/object/fsu%3A641Dirac, P. A. (1926b). On the theory of quantum mechanics. Royal Society. https://doi.org/10.1098/rspa.1926.0133Dirac, P. A. (1927a). The physical interpretation of the quantum dynamics. Royal Society. https://doi.org/10.1098/rspa.1927.0012Dirac, P. A. (1927b). The quantum theory of the emission and absorption of radiation. Royal Society. https://doi.org/10.1098/rspa.1927.0039Dirac, P. A. (1928a). The quantum theory of the electron. Proceedings of the Royal Society of London. https://doi.org/10.1098/rspa.1928.0023Dirac, P. A. (1928b). The quantum theory of the Electron. Part II. The Royal Society. https://doi.org/10.1098/rspa.1928.0056Dirac, P. A. (1930a). A theory of electrons and protons. Proc. R. Soc. Lond. https://doi.org/10.1098/rspa.1930.0013Dirac, P. A. (1930b). The Principles of Quantum Mechanics. Oxford University Press.Dirac, P. A. (06 de 05 de 1963). Entrevista. (T. S. Kuhn, Entrevistador) https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4575-2Dirac, P. A. (15 de Abril de 1975). The history of the positron. Roma. https://lamediateca.infn.it/mediateca/view.php?v=227Dirac, P. A. (1977). History of twentieth century physics. Recollections of an Exciting era. Tallahassee, Florida: Edited by C. Weiner.Eckart, C. (1926). The Hydrogen Spectrum in the New Quantum Theory. Phys. Rev.(28). https://doi.org/10.1103/PhysRev.28.927Einstein,1916. (s.f.). The collected papers of albert einstein-Universidad de princeton. Volume 8: The Berlin Years: Correspondence, 1914-1918 (English translation supplement): https://einsteinpapers.press.princeton.edu/vol8-trans/269Farmelo, G. (2009a). The strangest man. The hidden life of PAUL DIRAC. Basic BooksFarmelo, G. (2009b). Did Dirac predict the positron? Contemporary Physics. https://doi.org/10.1080/00107510903217214Feynman, R. P. (1987). The reason for antiparticles. Cambridge University Press. https://doi.org/10.1017/CBO9781107590076.002Fock, V. (1926). Zur Schrödingerschen Wellenmechanik. Z. Physik, 242-250. https://doi.org/10.1007/BF01399113Forero, S. M. (2014). Sadi Carnot y la segunda Ley de la Termodinámica. La historia de la ciencia como pedagogía natural. http://hdl.handle.net/20.500.12209/81G.F. Bassan, M. Inguscio, T.W. Hilnsct. (1989). The Hydrogen Atom (An Historical Account of Studies of Its Spectrum). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88421-4_1Galili, I. (2008). HISTORY OF PHYSICS AS A TOOL FOR TEACHING. The Hebrew University of JerusalemGaray, F. R. (2011). Perspectivas de historia y contexto cultural en la enseñanza de las ciencias: Discusiones para los procesos de enseñanza y aprendizaje. Ciência & Educação.Garcia, J. (2015). PAUL DIRAC. Parte 2: ¿Cómo llegó Dirac a su ecuación? Aula 141. https://www.youtube.com/watch?v=BI5udYKvStsGIilbert N. Lewis y Frank H. Spedding. (1933). A Spectroscopic Search for H3 in Concentrated H2. Physical Review. https://doi.org/10.1103/PhysRev.43.964Gordon, W. (1928). Paul A.M. Dirac Collection. Letter to Dr. Dirac, January 13, 1928: https://diginole.lib.fsu.edu/islandora/object/fsu%3A585359Goudsmit, S. (1971). The discovery of the electron spin. https://www.lorentz.leidenuniv.nl/history/spin/goudsmit.htmlGoudsmit, Uhlenbeck. (1926). Spinning Electrons and the Structure of Spectra. Nature(117), 264-265. https://doi.org/10.1038/117264a0Heilbron, J. L. (1968). Quantum Historiography and the Archive for History of Quantum Physics. History of Science, 7. https://doi.org/10.1177/007327536800700103Heisenberg. (13 de Febrero de 1928). Letter to Dr. Dirac, February 13, 1928, page 1. https://diginole.lib.fsu.edu/islandora/object/fsu%3A585353Heisenberg, W. (1922). Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneflekte. Z. Physik (8), 273-297. https://doi.org/10.1007/BF01329602Heisenberg, W. (1925). Niels Bohr Library & Archives. Correspondencia de Heisenberg y Goudsmit: https://repository.aip.org/islandora/object/nbla:285444#page/36/mode/1upHernández, C. G. (2018). Sobre la importancia de axiomatizar la mecánica newtoniana haciendo uso del formalismo matemático de Von Neumann para la enseñanza de la mecanica cuantica. Bogota: Universidad pedagogica nacionalHoyer, U. (1981). Work on Atomic Physics (1912 - 1917). North Holland.Instituto Nacional de Astrofísica, Ó. y. (s.f.). Imagen del efecto Zeeman normal y anómalo. https://slideplayer.es/amp/13021847Jagdish, M., & Helmut, R. (1982). The historical development of quantum theory (Vol. 3). Springer.Jammer, M. (1989). The conceptual development of quantum mechanics. Tomash Publishers.Klein, O. (1926). Quantentheorie und funfdimensionale Relativitatstheorie. Zeitschrift für Physik, 895–906. https://doi.org/10.1007/BF01397481Kragh, H. (1981). The Genesis of Dirac's Relativistic Theory . Springer-Verlag.Kragh, H. (1984). Equation with the many fathers. The Klein-Gordon equation in 1926. American journal of physics, 1024-1032. http://dx.doi.org/10.1119/1.13782Kragh, H. (1985). The Fine Structure of Hydrogen and the Gross Structure of the Physics Community. Historical Studies in the Physical Sciences, 15(2). https://doi.org/10.2307/27757550Kragh, H. (1990). Dirac_ A scientific biography. Cambridge Uaiversity Press.Kragh, H. (1992). A Sense of History: History of Science and the Teaching of Introductory Quantum Theory. Science and education , 349-363. https://doi.org/10.1007/BF00430962Kragh, H. (2012). Niels Bohr and the quantum atom. Oxford university press.Lancaster, T., & Blundell, S. (2014). Quantum field theory for the Gifted Amateur. Oxford university pressLittlejohn, R. G. (2021). Solutions of the Dirac Equation and Their Properties. University Of California Berkeley: https://bohr.physics.berkeley.edu/classes/221/notes/spdirac.pdfM D’Anna y T Corridoni. (2018). Measuring the Separation of the Sodium D-doubletwith a Michelson Interferometer. European Physical Society. https://doi.org/10.1088/1361-6404/aa8e76M, Massimi. (2005). From the old quantum theory to the new quantum theory: reconsidering Kuhn’s incommensurability. Cambridge University Press, 78-111. https://doi.org/10.1017/CBO9780511535352.007M. Born, W.Heisenberg ,P.Jordan. (1925). On quantum mechanics II. Z.Phys.(35). http://fisica.ciens.ucv.ve/~svincenz/SQM333.pdfMascart, M. (1869). Surles spectres ultra-violets. Comptes Rendus 69, 338. https://www.biodiversitylibrary.org/item/23684#page/344/mode/1upMesa, J. B. (2011). ESPECTROS ATOMICOS. ATOMO HIDROGENO. Departamento de fisica- UNIVERSIDAD MILITAR NUEVA GRANADA.Michelson, A., & Morley, E. (1887). On a method of making the wavelength of sodium light the actual and practical standard of length. American Journal of Science. https://doi.org/10.2475/ajs.s3-34.204.427Museum, D. (2023). Tools of cosmology [Imagen]. https://history.aip.org/exhibits/cosmology/tools/pic-spectroscopy-fraunhofer-spectrum.htmNicholson, J. (1912). The constitution of the solar corona III. Monthly notices of the royal astronomical society, LXXII. https://doi.org/10.1093/mnras/72.9.729Oppenheimer, J. R. (1927). Letter to Dr. Dirac. https://diginole.lib.fsu.edu/islandora/object/fsu:585187Orozco, J. C. (2005). ATAJOS Y DESVIACIONES. LOS ESTUDIOS HISTÓRICO-CRÍTICOS Y LA ENSEÑANZA DE LAS CIENCIAS.Physics Forums. (2013). Undergraduate-level explanation of Dirac Equation. https://www.physicsforums.com/threads/undergraduate-level-explanation-of-dirac-equation.695379/Planck, M. (1920). Max Planck nobel lecture . The Genesis and Present State of Development of the Quantum Theory. https://www.nobelprize.org/prizes/physics/1918/planck/lecture/Popa, S. (2023). Physicists measure the electron electric dipole moment to unprecedented precision. Physics World. https://physicsworld.com/a/physicists-measure-the-electron-electric-dipole-moment-to-unprecedented-precision/Prasad, R. (2023). Advanced Physics . Advanced Physics channel .Purcell, E. M., & Ramsey, N. F. (1950). On the Possibility of Electric Dipole Moments for Elementary Particles and Nuclei. PHYSICAL REVIEW JOURNALS ARCHIVE. https://doi.org/10.1103/PhysRev.78.807Rajasekaran, G. (2003). The Discovery of Dirac Equation and its Impact on Present-day Physics. Reson, 8, 59-74. https://doi.org/10.1007/BF02866760Richter, C. F. (1927). The Hydrogen Atom with a Spinning Electron in Wave Mechanics. National Academy of Sciences. https://www.jstor.org/stable/84949Roorkee, I. (2018). Lecture 25 : Michelson Interferometer and Its Applications - II. https://www.youtube.com/watch?v=jSCSgzhIRbs&t=623sRosenfeld, L. (1963). Entrevista de Leon Rosenfeld con Thomas Khun. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4847-1Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem. Annalen der Physik, 384, 273-376. https://doi.org/10.1002/andp.19263840404Schrödinger, E. (1926b). An Undulatory theory of the mechanics of atoms and molecules. Physical Review. https://doi.org/10.1103/PhysRev.28.1049Schwartz, M. (2016). Diffraction and resolution. Scholars harvard: https://scholar.harvard.edu/files/schwartz/files/lecture19-diffraction.pdfSiegbahn, M. (1916). Relations between the K and L Series of the High-Frequency Spectra. Nature, 676. https://doi.org/10.1038/096676b0Stoney, G. (1871). On the cause of the interrupted spectra of gases. Philosophical Maga, 291-296. https://www.jstor.org/stable/20540925Thomas, L. H. (1926). The Motion of the Spinning Electron. Nature, 117. https://doi.org/10.1038/117514a0Uhlenbeck, G. Goudsmit, S. (1925). Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Die Naturwissenschaften. https://doi.org/10.1007/BF01558878Universitat wien . (s.f.). Schrödinger, Erwin: Notizen mit der Überschrift "H-Atom, Eigenschwingungen". https://fedora.phaidra.univie.ac.at/fedora/objects/o:164829/methods/bdef:Book/view?language=en#Villatoro, F. (6 de Enero de 2013). La ciencia de la mula francis . Nota dominical: Qué es el espín de una partícula: https://francis.naukas.com/2013/01/06/nota-dominical-que-es-el-espin-de-una-particula/W. Gerlach, O. Stern. (1922). Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Z. Physik 8. https://doi.org/10.1007/BF01329580W. Heisenberg, P. Jordan. (1926). Application of quantum mechanics to the problem of the anomalous Zeeman effect. Zeit. Phys(37), 263-277. https://doi.org/10.1007/BF01397100W.Pauli. (1925a). Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. 776. https://doi.org/10.1007/BF02980631W.Pauli. (1925b). Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt. Zeitschrift für Physik, 373-385. https://doi.org/10.1007/BF02980592W.Pauli. (1926). ON THE HYDROGEN SPECTRUM FROM THE STANDPOINT OF THE NEW QUANTUM MECHANICS. 414. https://www.informationphilosopher.com/solutions/scientists/pauli/H_Spectrum_Pauli.pdfW.Pauli. (1927). Zur Quantenmechanik des magnetischen Elektrons. Z. Physik(43), 601–623. https://doi.org/10.1007/BF01397326W.Pauli. (1946). Remarks on the History of the Exclusion Principle. Science, 103(2669), 213-215. https://www.jstor.org/stable/1673346Wentzel, V. G. (1926). Die mehrfach periodischen Systeme in der Quanten mechanik. Z. Physik , 80-94. https://doi.org/10.1007/BF01397309Wolfgang Fleischer, G. S. (1984). Bound State Solutions of the Klein-Gordon Equation for Strong Potentials. Zeitschrift für Naturforschung A, 39, 703-719. https://doi.org/10.1515/zna-1984-0801Zemax. (2021). How to build a spectrometer - theory. https://support.zemax.com/hc/en-us/articles/1500005578762-How-to-build-a-spectrometer-theoryTHUMBNAILanalisis historico del origen de la ecuación Dirac.pdf.jpganalisis historico del origen de la ecuación Dirac.pdf.jpgIM Thumbnailimage/jpeg3144http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/7/analisis%20historico%20del%20origen%20de%20la%20ecuaci%c3%b3n%20Dirac.pdf.jpgd08ab1e20628a2c1142f04b206a06e06MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55202403600095003-31 MAY 24 JOHAN DUARTE.pdf202403600095003-31 MAY 24 JOHAN DUARTE.pdfLICENCIA APROBADAapplication/pdf361061http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/6/202403600095003-31%20MAY%2024%20JOHAN%20DUARTE.pdfcd115a471e3d80f6b3f171379f67baedMD56ORIGINALanalisis historico del origen de la ecuación Dirac.pdfanalisis historico del origen de la ecuación Dirac.pdfapplication/pdf3336889http://repository.pedagogica.edu.co/bitstream/20.500.12209/19815/4/analisis%20historico%20del%20origen%20de%20la%20ecuaci%c3%b3n%20Dirac.pdf6b21486c16844d5efceae374b5839baaMD5420.500.12209/19815oai:repository.pedagogica.edu.co:20.500.12209/198152024-06-25 23:00:31.791Repositorio Institucional Universidad Pedagógica Nacionalrepositorio@pedagogica.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |