H-conjuntos.

Así como la lógica asociada al álgebra de Heyting 2, permite construir la teoría de conjuntos clásica, cualquier otra álgebra de Heyting H permite construir por analogía teorías que llamaremos de H-conjuntos [8], los cuales están definidos por predicados cuyos valores de verdad son los elementos del...

Full description

Autores:
Páez O., Jorge
Luque A., Carlos
Donado N., Albedo
Tipo de recurso:
Article of journal
Fecha de publicación:
1999
Institución:
Universidad Pedagógica Nacional
Repositorio:
Repositorio Institucional UPN
Idioma:
spa
OAI Identifier:
oai:repository.pedagogica.edu.co:20.500.12209/15686
Acceso en línea:
https://revistas.upn.edu.co/index.php/TED/article/view/5679
http://hdl.handle.net/20.500.12209/15686
Palabra clave:
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc/4.0
Description
Summary:Así como la lógica asociada al álgebra de Heyting 2, permite construir la teoría de conjuntos clásica, cualquier otra álgebra de Heyting H permite construir por analogía teorías que llamaremos de H-conjuntos [8], los cuales están definidos por predicados cuyos valores de verdad son los elementos del conjunto H y donde las proposiciones que ellos generan pueden conectarse mediante las operaciones (٨ ,٧,→ ), propias del álgebra considerada. En estas teorías es posible desarrollar conceptos que generalizan nociones entre conjuntos como las de producto, relaciones y funciones, etc. A pesar de que el conjunto de valores de verdad de H permite incluir casos como el del intervalo real [0,1] y que las operaciones (٨) e (٧) a definir coinciden con las de la lógica difusa [3], esta teoría difiere de aquella por no considerar definido un complemento y por considerar el operador (→)como el adjunto a derecha del operador (٨).