Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.

60 páginas incluye indice ilustraciones, diagramas y fotografías

Autores:
Moyano Molano, Miguel Alexander
Sanchez Cardozo, John Alexander
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad de la Sabana
Repositorio:
Repositorio Universidad de la Sabana
Idioma:
spa
OAI Identifier:
oai:intellectum.unisabana.edu.co:10818/15675
Acceso en línea:
http://hdl.handle.net/10818/15675
Palabra clave:
Hidrógeno -- Producción -- Colombia
Fotocatálisis
Hidrógeno -- Metabolismo
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id REPOUSABA2_ecd282c42346602b4752eb8c5f51ad41
oai_identifier_str oai:intellectum.unisabana.edu.co:10818/15675
network_acronym_str REPOUSABA2
network_name_str Repositorio Universidad de la Sabana
repository_id_str
dc.title.es_CO.fl_str_mv Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
title Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
spellingShingle Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
Hidrógeno -- Producción -- Colombia
Fotocatálisis
Hidrógeno -- Metabolismo
title_short Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
title_full Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
title_fullStr Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
title_full_unstemmed Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
title_sort Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
dc.creator.fl_str_mv Moyano Molano, Miguel Alexander
Sanchez Cardozo, John Alexander
dc.contributor.advisor.none.fl_str_mv López Vásquez, Andrés Felipe
dc.contributor.author.none.fl_str_mv Moyano Molano, Miguel Alexander
Sanchez Cardozo, John Alexander
dc.subject.none.fl_str_mv Hidrógeno -- Producción -- Colombia
Fotocatálisis
Hidrógeno -- Metabolismo
topic Hidrógeno -- Producción -- Colombia
Fotocatálisis
Hidrógeno -- Metabolismo
description 60 páginas incluye indice ilustraciones, diagramas y fotografías
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-04-24T22:05:56Z
dc.date.available.none.fl_str_mv 2015-04-24T22:05:56Z
dc.date.created.none.fl_str_mv 2015
dc.date.issued.none.fl_str_mv 2015-04-24
dc.type.none.fl_str_mv bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis de pregrado
dc.type.hasVersion.none.fl_str_mv publishedVersion
dc.identifier.citation.none.fl_str_mv A, J, & Torres, L. (2014). Effect of calcination temperature on the textural and structural properties of Fe(III)-TiO2. Facultad de ciencias básicas, 186-195.
Alagiri, M, & Sharifah Bee, A. H. (2014). Synthesis, characterization and photocatalytic application of α-Fe2O3microflower. Materials Letters, 329- 332.
Albella, J. M, & Martínez-Duart, J. M. (2010). Fudamentos de electrónica física y microelectónica. Madrid: Adison Wesley/ Universidad autónoma de Madrid.
Alihosseinzadeh, A, Nematollahi, B., & Rezaei, M. (2015). CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream. International Journal of Hydrogen Energy, 1809–1819.
Al-Kuhaili, M, Saleem, M., & Durrani, S. (2012). Journal of Alloys and Compounds, 178-182.
Amouyal, E. (2005). Photochemical production od hydrogen and oxygen from water: a reviewand state of art. Solar Energy Materials and Solar Cells, 249-276.
Ashokkumar, M. (2000). An overview on semiconductor particulate system for photoconduction of hydrogen. Hydrogen Energy, 427-438.
Athapon, S, Thanakorn, W., Sorapong, P., & Wisanu, P. (2013 ). Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method. Mater.Res.Bull., 3211-3217.
Berna, M. L. (2009). Obtención de microencapsulados funcionales de zumo de opuntia stricta mediante secado por atomización. Universidad politécnica de Cartagena
Colmenares, J, Aramendía, M., Marinas, A., Marinas, J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metaldoped titania systems. Applied Catalysis A: Genera, 120-127.
Desmond, F, & Tsiokos , D. S. (2015). Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits. Ore geology, 309-333.
Faycal, A. M, Ismail, A. A., Al-Sayari, S., Bahnemann, D., Afanasev, D., & Emeline, A. (2015). Mesoporous TiO2nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photocatalytic performance. Chemical Engineering Journal, 417-424.
FMC BioPolymer. (2006, 08 09). MATERIAL SAFETY SHEET DATA. Retrieved from http://msdsviewer.fmc.com/private/document.aspx?prd=2250200- B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~PROTA NAL%C2%AE%20LF%20120%20LS%20SODIUM%20ALGINATE~~
Ganesh, I, Kumar, P. P, Gupta, A. K., Sekhar, P. S., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and p
Gazsi, A, Schubert, G., Bánsági, T., & Solymosi, F. (2013). Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2. J.Photochem.Photobiol.A, 45-55
Gnanaprakash, G., Ayyappan, S., Jayakumar, T., Philip, J., & Raj, B. (2006). Magnetic nanoparticles with enhanced γ -Fe2O3 to α-Fe2O phase transition temperature. Nanotechnology, 5851–5857.
Hilonga, A., Kim, J.-K., Sarawade, P. B., Quang, D. V., Shao, G. N., Elineema, G., & Kim, H. T. (2012). BET study of silver-doped silica based on an inexpensive method. Materials Letters, 168-170.
Hosseini, S. A., Niaei, A., & Salari, D. (2011). Production of γ-Al2O3from Kaolin . Open Journal of Physical Chemistry, 23-27
Hu, B., & Yao, M. (2014). Optical properties of amorphous A
Huabing , Y., Tianyou , P., Dingning , K., & Dai , K. (2008). Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy, 672-678.
J.C, C., M.A, A., Marinas A, M. J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: Genera, 120-127.
Jeffrey , L. M., Wan, R. W., & Mohammad, K. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 5233-5244.
Jiang, i., Luo, Y., Zhang, F., Guo, L., & Ni, L. (2013). Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2microspheres. Applied Surface Science, 448-456.
Jiaxiu, G. (2013). Study of Pt–Rh/CeO2–ZrO2–MxOy (M = Y, La)/Al2O3 three-way catalysts. Applied Surface Science, 527-535.
Kai, Y., Guosheng, W., Cody, J., Jiali, W., & Aicheng, C. (2014). Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Applied Catalysis B: Environmental, , 148– 149
Kwak, B. S. (2009). Enhanced hydrogen production from methanol/water photosplitting in TiO2 including Pd component. Bulletin of the Korean Chemical Society, 1047-1053.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10818/15675
dc.identifier.local.none.fl_str_mv 260398
TE07286
identifier_str_mv A, J, & Torres, L. (2014). Effect of calcination temperature on the textural and structural properties of Fe(III)-TiO2. Facultad de ciencias básicas, 186-195.
Alagiri, M, & Sharifah Bee, A. H. (2014). Synthesis, characterization and photocatalytic application of α-Fe2O3microflower. Materials Letters, 329- 332.
Albella, J. M, & Martínez-Duart, J. M. (2010). Fudamentos de electrónica física y microelectónica. Madrid: Adison Wesley/ Universidad autónoma de Madrid.
Alihosseinzadeh, A, Nematollahi, B., & Rezaei, M. (2015). CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream. International Journal of Hydrogen Energy, 1809–1819.
Al-Kuhaili, M, Saleem, M., & Durrani, S. (2012). Journal of Alloys and Compounds, 178-182.
Amouyal, E. (2005). Photochemical production od hydrogen and oxygen from water: a reviewand state of art. Solar Energy Materials and Solar Cells, 249-276.
Ashokkumar, M. (2000). An overview on semiconductor particulate system for photoconduction of hydrogen. Hydrogen Energy, 427-438.
Athapon, S, Thanakorn, W., Sorapong, P., & Wisanu, P. (2013 ). Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method. Mater.Res.Bull., 3211-3217.
Berna, M. L. (2009). Obtención de microencapsulados funcionales de zumo de opuntia stricta mediante secado por atomización. Universidad politécnica de Cartagena
Colmenares, J, Aramendía, M., Marinas, A., Marinas, J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metaldoped titania systems. Applied Catalysis A: Genera, 120-127.
Desmond, F, & Tsiokos , D. S. (2015). Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits. Ore geology, 309-333.
Faycal, A. M, Ismail, A. A., Al-Sayari, S., Bahnemann, D., Afanasev, D., & Emeline, A. (2015). Mesoporous TiO2nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photocatalytic performance. Chemical Engineering Journal, 417-424.
FMC BioPolymer. (2006, 08 09). MATERIAL SAFETY SHEET DATA. Retrieved from http://msdsviewer.fmc.com/private/document.aspx?prd=2250200- B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~PROTA NAL%C2%AE%20LF%20120%20LS%20SODIUM%20ALGINATE~~
Ganesh, I, Kumar, P. P, Gupta, A. K., Sekhar, P. S., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and p
Gazsi, A, Schubert, G., Bánsági, T., & Solymosi, F. (2013). Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2. J.Photochem.Photobiol.A, 45-55
Gnanaprakash, G., Ayyappan, S., Jayakumar, T., Philip, J., & Raj, B. (2006). Magnetic nanoparticles with enhanced γ -Fe2O3 to α-Fe2O phase transition temperature. Nanotechnology, 5851–5857.
Hilonga, A., Kim, J.-K., Sarawade, P. B., Quang, D. V., Shao, G. N., Elineema, G., & Kim, H. T. (2012). BET study of silver-doped silica based on an inexpensive method. Materials Letters, 168-170.
Hosseini, S. A., Niaei, A., & Salari, D. (2011). Production of γ-Al2O3from Kaolin . Open Journal of Physical Chemistry, 23-27
Hu, B., & Yao, M. (2014). Optical properties of amorphous A
Huabing , Y., Tianyou , P., Dingning , K., & Dai , K. (2008). Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy, 672-678.
J.C, C., M.A, A., Marinas A, M. J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: Genera, 120-127.
Jeffrey , L. M., Wan, R. W., & Mohammad, K. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 5233-5244.
Jiang, i., Luo, Y., Zhang, F., Guo, L., & Ni, L. (2013). Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2microspheres. Applied Surface Science, 448-456.
Jiaxiu, G. (2013). Study of Pt–Rh/CeO2–ZrO2–MxOy (M = Y, La)/Al2O3 three-way catalysts. Applied Surface Science, 527-535.
Kai, Y., Guosheng, W., Cody, J., Jiali, W., & Aicheng, C. (2014). Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Applied Catalysis B: Environmental, , 148– 149
Kwak, B. S. (2009). Enhanced hydrogen production from methanol/water photosplitting in TiO2 including Pd component. Bulletin of the Korean Chemical Society, 1047-1053.
260398
TE07286
url http://hdl.handle.net/10818/15675
dc.language.iso.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.none.fl_str_mv Universidad de la Sabana
dc.publisher.program.none.fl_str_mv Ingeniería Química
dc.publisher.department.none.fl_str_mv Facultad de Ingeniería
publisher.none.fl_str_mv Universidad de la Sabana
dc.source.none.fl_str_mv Universidad de La Sabana
Intellectum Repositorio Universidad de La Sabana
institution Universidad de la Sabana
bitstream.url.fl_str_mv https://intellectum.unisabana.edu.co/bitstream/10818/15675/1/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdf
https://intellectum.unisabana.edu.co/bitstream/10818/15675/2/license_rdf
https://intellectum.unisabana.edu.co/bitstream/10818/15675/3/license.txt
https://intellectum.unisabana.edu.co/bitstream/10818/15675/5/LAURA%20PATAQUIVA%20%28T%29%20TESIS.pdf
https://intellectum.unisabana.edu.co/bitstream/10818/15675/4/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdf.txt
bitstream.checksum.fl_str_mv c6b4629a75a6e7577bdf47596eded3f7
7c9ab7f006165862d8ce9ac5eac01552
f52a2cfd4df262e08e9b300d62c85cab
24acfd1369e7636545ae2b089866a098
04336ca3099d7c92925f80c300d56cd2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Intellectum Universidad de la Sabana
repository.mail.fl_str_mv contactointellectum@unisabana.edu.co
_version_ 1811952245020819456
spelling López Vásquez, Andrés FelipeMoyano Molano, Miguel AlexanderSanchez Cardozo, John AlexanderIngeniero Químico2015-04-24T22:05:56Z2015-04-24T22:05:56Z20152015-04-24A, J, & Torres, L. (2014). Effect of calcination temperature on the textural and structural properties of Fe(III)-TiO2. Facultad de ciencias básicas, 186-195.Alagiri, M, & Sharifah Bee, A. H. (2014). Synthesis, characterization and photocatalytic application of α-Fe2O3microflower. Materials Letters, 329- 332.Albella, J. M, & Martínez-Duart, J. M. (2010). Fudamentos de electrónica física y microelectónica. Madrid: Adison Wesley/ Universidad autónoma de Madrid.Alihosseinzadeh, A, Nematollahi, B., & Rezaei, M. (2015). CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream. International Journal of Hydrogen Energy, 1809–1819.Al-Kuhaili, M, Saleem, M., & Durrani, S. (2012). Journal of Alloys and Compounds, 178-182.Amouyal, E. (2005). Photochemical production od hydrogen and oxygen from water: a reviewand state of art. Solar Energy Materials and Solar Cells, 249-276.Ashokkumar, M. (2000). An overview on semiconductor particulate system for photoconduction of hydrogen. Hydrogen Energy, 427-438.Athapon, S, Thanakorn, W., Sorapong, P., & Wisanu, P. (2013 ). Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method. Mater.Res.Bull., 3211-3217.Berna, M. L. (2009). Obtención de microencapsulados funcionales de zumo de opuntia stricta mediante secado por atomización. Universidad politécnica de CartagenaColmenares, J, Aramendía, M., Marinas, A., Marinas, J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metaldoped titania systems. Applied Catalysis A: Genera, 120-127.Desmond, F, & Tsiokos , D. S. (2015). Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits. Ore geology, 309-333.Faycal, A. M, Ismail, A. A., Al-Sayari, S., Bahnemann, D., Afanasev, D., & Emeline, A. (2015). Mesoporous TiO2nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photocatalytic performance. Chemical Engineering Journal, 417-424.FMC BioPolymer. (2006, 08 09). MATERIAL SAFETY SHEET DATA. Retrieved from http://msdsviewer.fmc.com/private/document.aspx?prd=2250200- B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~PROTA NAL%C2%AE%20LF%20120%20LS%20SODIUM%20ALGINATE~~Ganesh, I, Kumar, P. P, Gupta, A. K., Sekhar, P. S., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and pGazsi, A, Schubert, G., Bánsági, T., & Solymosi, F. (2013). Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2. J.Photochem.Photobiol.A, 45-55Gnanaprakash, G., Ayyappan, S., Jayakumar, T., Philip, J., & Raj, B. (2006). Magnetic nanoparticles with enhanced γ -Fe2O3 to α-Fe2O phase transition temperature. Nanotechnology, 5851–5857.Hilonga, A., Kim, J.-K., Sarawade, P. B., Quang, D. V., Shao, G. N., Elineema, G., & Kim, H. T. (2012). BET study of silver-doped silica based on an inexpensive method. Materials Letters, 168-170.Hosseini, S. A., Niaei, A., & Salari, D. (2011). Production of γ-Al2O3from Kaolin . Open Journal of Physical Chemistry, 23-27Hu, B., & Yao, M. (2014). Optical properties of amorphous AHuabing , Y., Tianyou , P., Dingning , K., & Dai , K. (2008). Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy, 672-678.J.C, C., M.A, A., Marinas A, M. J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: Genera, 120-127.Jeffrey , L. M., Wan, R. W., & Mohammad, K. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 5233-5244.Jiang, i., Luo, Y., Zhang, F., Guo, L., & Ni, L. (2013). Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2microspheres. Applied Surface Science, 448-456.Jiaxiu, G. (2013). Study of Pt–Rh/CeO2–ZrO2–MxOy (M = Y, La)/Al2O3 three-way catalysts. Applied Surface Science, 527-535.Kai, Y., Guosheng, W., Cody, J., Jiali, W., & Aicheng, C. (2014). Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Applied Catalysis B: Environmental, , 148– 149Kwak, B. S. (2009). Enhanced hydrogen production from methanol/water photosplitting in TiO2 including Pd component. Bulletin of the Korean Chemical Society, 1047-1053.http://hdl.handle.net/10818/15675260398TE0728660 páginas incluye indice ilustraciones, diagramas y fotografíasEn el presente estudio se sintetizaron microesferas de arenas negras para la producción fotocatalítica de hidrógeno. Las arenas negras se obtuvieron de las playas de Santa Marta (Colombia), la muestra fue separada magnéticamente, molida y tamizada por malla 53 µm. Las microesferas se elaboraron en una matriz de alginato de sodio al variando la relación entre alginato:mineral 9:1, 8:2 y 7:3, seleccionando esta última como objeto de estudio debido a su mayor resistencia mecánica. Posteriormente se caracterizó su composición química, morfología, respuesta óptica y estructura mediante las técnicas XRF, SEM-EDX, espectrofotometría UV-VIS y FTIR respectivamente, determinando que en su composición existen agentes fotocatalíticamente activos como el TiO2 y α-Fe2O3 y que su gap directo permitido es 2.24 eV equivalente a una longitud de onda de 553 nm-1 la cual absorbe en el espectro visible. Finalmente se realizaron ensayos fotocatalíticos determinando que el comportamiento de la tasa de producción de hidrógeno es inversamente proporcional a la concentración de microesferas.​Universidad de la SabanaIngeniería QuímicaFacultad de IngenieríaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Universidad de La SabanaIntellectum Repositorio Universidad de La SabanaHidrógeno -- Producción -- ColombiaFotocatálisisHidrógeno -- MetabolismoDesarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.bachelorThesisTesis de pregradopublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_7a1fspaORIGINALMiguel Alexander Moyano Molano (tesis).pdfMiguel Alexander Moyano Molano (tesis).pdfVer documento en PDFapplication/pdf1840154https://intellectum.unisabana.edu.co/bitstream/10818/15675/1/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdfc6b4629a75a6e7577bdf47596eded3f7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81223https://intellectum.unisabana.edu.co/bitstream/10818/15675/2/license_rdf7c9ab7f006165862d8ce9ac5eac01552MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/15675/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD53LAURA PATAQUIVA (T) TESIS.pdfLAURA PATAQUIVA (T) TESIS.pdfapplication/pdf1509399https://intellectum.unisabana.edu.co/bitstream/10818/15675/5/LAURA%20PATAQUIVA%20%28T%29%20TESIS.pdf24acfd1369e7636545ae2b089866a098MD55TEXTMiguel Alexander Moyano Molano (tesis).pdf.txtMiguel Alexander Moyano Molano (tesis).pdf.txtExtracted Texttext/plain60https://intellectum.unisabana.edu.co/bitstream/10818/15675/4/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdf.txt04336ca3099d7c92925f80c300d56cd2MD5410818/15675oai:intellectum.unisabana.edu.co:10818/156752017-10-06 09:31:52.085Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K