Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.
60 páginas incluye indice ilustraciones, diagramas y fotografías
- Autores:
-
Moyano Molano, Miguel Alexander
Sanchez Cardozo, John Alexander
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad de la Sabana
- Repositorio:
- Repositorio Universidad de la Sabana
- Idioma:
- spa
- OAI Identifier:
- oai:intellectum.unisabana.edu.co:10818/15675
- Acceso en línea:
- http://hdl.handle.net/10818/15675
- Palabra clave:
- Hidrógeno -- Producción -- Colombia
Fotocatálisis
Hidrógeno -- Metabolismo
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
REPOUSABA2_ecd282c42346602b4752eb8c5f51ad41 |
---|---|
oai_identifier_str |
oai:intellectum.unisabana.edu.co:10818/15675 |
network_acronym_str |
REPOUSABA2 |
network_name_str |
Repositorio Universidad de la Sabana |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. |
title |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. |
spellingShingle |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. Hidrógeno -- Producción -- Colombia Fotocatálisis Hidrógeno -- Metabolismo |
title_short |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. |
title_full |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. |
title_fullStr |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. |
title_full_unstemmed |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. |
title_sort |
Desarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno. |
dc.creator.fl_str_mv |
Moyano Molano, Miguel Alexander Sanchez Cardozo, John Alexander |
dc.contributor.advisor.none.fl_str_mv |
López Vásquez, Andrés Felipe |
dc.contributor.author.none.fl_str_mv |
Moyano Molano, Miguel Alexander Sanchez Cardozo, John Alexander |
dc.subject.none.fl_str_mv |
Hidrógeno -- Producción -- Colombia Fotocatálisis Hidrógeno -- Metabolismo |
topic |
Hidrógeno -- Producción -- Colombia Fotocatálisis Hidrógeno -- Metabolismo |
description |
60 páginas incluye indice ilustraciones, diagramas y fotografías |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2015-04-24T22:05:56Z |
dc.date.available.none.fl_str_mv |
2015-04-24T22:05:56Z |
dc.date.created.none.fl_str_mv |
2015 |
dc.date.issued.none.fl_str_mv |
2015-04-24 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis de pregrado |
dc.type.hasVersion.none.fl_str_mv |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
A, J, & Torres, L. (2014). Effect of calcination temperature on the textural and structural properties of Fe(III)-TiO2. Facultad de ciencias básicas, 186-195. Alagiri, M, & Sharifah Bee, A. H. (2014). Synthesis, characterization and photocatalytic application of α-Fe2O3microflower. Materials Letters, 329- 332. Albella, J. M, & Martínez-Duart, J. M. (2010). Fudamentos de electrónica física y microelectónica. Madrid: Adison Wesley/ Universidad autónoma de Madrid. Alihosseinzadeh, A, Nematollahi, B., & Rezaei, M. (2015). CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream. International Journal of Hydrogen Energy, 1809–1819. Al-Kuhaili, M, Saleem, M., & Durrani, S. (2012). Journal of Alloys and Compounds, 178-182. Amouyal, E. (2005). Photochemical production od hydrogen and oxygen from water: a reviewand state of art. Solar Energy Materials and Solar Cells, 249-276. Ashokkumar, M. (2000). An overview on semiconductor particulate system for photoconduction of hydrogen. Hydrogen Energy, 427-438. Athapon, S, Thanakorn, W., Sorapong, P., & Wisanu, P. (2013 ). Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method. Mater.Res.Bull., 3211-3217. Berna, M. L. (2009). Obtención de microencapsulados funcionales de zumo de opuntia stricta mediante secado por atomización. Universidad politécnica de Cartagena Colmenares, J, Aramendía, M., Marinas, A., Marinas, J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metaldoped titania systems. Applied Catalysis A: Genera, 120-127. Desmond, F, & Tsiokos , D. S. (2015). Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits. Ore geology, 309-333. Faycal, A. M, Ismail, A. A., Al-Sayari, S., Bahnemann, D., Afanasev, D., & Emeline, A. (2015). Mesoporous TiO2nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photocatalytic performance. Chemical Engineering Journal, 417-424. FMC BioPolymer. (2006, 08 09). MATERIAL SAFETY SHEET DATA. Retrieved from http://msdsviewer.fmc.com/private/document.aspx?prd=2250200- B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~PROTA NAL%C2%AE%20LF%20120%20LS%20SODIUM%20ALGINATE~~ Ganesh, I, Kumar, P. P, Gupta, A. K., Sekhar, P. S., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and p Gazsi, A, Schubert, G., Bánsági, T., & Solymosi, F. (2013). Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2. J.Photochem.Photobiol.A, 45-55 Gnanaprakash, G., Ayyappan, S., Jayakumar, T., Philip, J., & Raj, B. (2006). Magnetic nanoparticles with enhanced γ -Fe2O3 to α-Fe2O phase transition temperature. Nanotechnology, 5851–5857. Hilonga, A., Kim, J.-K., Sarawade, P. B., Quang, D. V., Shao, G. N., Elineema, G., & Kim, H. T. (2012). BET study of silver-doped silica based on an inexpensive method. Materials Letters, 168-170. Hosseini, S. A., Niaei, A., & Salari, D. (2011). Production of γ-Al2O3from Kaolin . Open Journal of Physical Chemistry, 23-27 Hu, B., & Yao, M. (2014). Optical properties of amorphous A Huabing , Y., Tianyou , P., Dingning , K., & Dai , K. (2008). Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy, 672-678. J.C, C., M.A, A., Marinas A, M. J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: Genera, 120-127. Jeffrey , L. M., Wan, R. W., & Mohammad, K. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 5233-5244. Jiang, i., Luo, Y., Zhang, F., Guo, L., & Ni, L. (2013). Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2microspheres. Applied Surface Science, 448-456. Jiaxiu, G. (2013). Study of Pt–Rh/CeO2–ZrO2–MxOy (M = Y, La)/Al2O3 three-way catalysts. Applied Surface Science, 527-535. Kai, Y., Guosheng, W., Cody, J., Jiali, W., & Aicheng, C. (2014). Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Applied Catalysis B: Environmental, , 148– 149 Kwak, B. S. (2009). Enhanced hydrogen production from methanol/water photosplitting in TiO2 including Pd component. Bulletin of the Korean Chemical Society, 1047-1053. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10818/15675 |
dc.identifier.local.none.fl_str_mv |
260398 TE07286 |
identifier_str_mv |
A, J, & Torres, L. (2014). Effect of calcination temperature on the textural and structural properties of Fe(III)-TiO2. Facultad de ciencias básicas, 186-195. Alagiri, M, & Sharifah Bee, A. H. (2014). Synthesis, characterization and photocatalytic application of α-Fe2O3microflower. Materials Letters, 329- 332. Albella, J. M, & Martínez-Duart, J. M. (2010). Fudamentos de electrónica física y microelectónica. Madrid: Adison Wesley/ Universidad autónoma de Madrid. Alihosseinzadeh, A, Nematollahi, B., & Rezaei, M. (2015). CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream. International Journal of Hydrogen Energy, 1809–1819. Al-Kuhaili, M, Saleem, M., & Durrani, S. (2012). Journal of Alloys and Compounds, 178-182. Amouyal, E. (2005). Photochemical production od hydrogen and oxygen from water: a reviewand state of art. Solar Energy Materials and Solar Cells, 249-276. Ashokkumar, M. (2000). An overview on semiconductor particulate system for photoconduction of hydrogen. Hydrogen Energy, 427-438. Athapon, S, Thanakorn, W., Sorapong, P., & Wisanu, P. (2013 ). Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method. Mater.Res.Bull., 3211-3217. Berna, M. L. (2009). Obtención de microencapsulados funcionales de zumo de opuntia stricta mediante secado por atomización. Universidad politécnica de Cartagena Colmenares, J, Aramendía, M., Marinas, A., Marinas, J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metaldoped titania systems. Applied Catalysis A: Genera, 120-127. Desmond, F, & Tsiokos , D. S. (2015). Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits. Ore geology, 309-333. Faycal, A. M, Ismail, A. A., Al-Sayari, S., Bahnemann, D., Afanasev, D., & Emeline, A. (2015). Mesoporous TiO2nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photocatalytic performance. Chemical Engineering Journal, 417-424. FMC BioPolymer. (2006, 08 09). MATERIAL SAFETY SHEET DATA. Retrieved from http://msdsviewer.fmc.com/private/document.aspx?prd=2250200- B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~PROTA NAL%C2%AE%20LF%20120%20LS%20SODIUM%20ALGINATE~~ Ganesh, I, Kumar, P. P, Gupta, A. K., Sekhar, P. S., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and p Gazsi, A, Schubert, G., Bánsági, T., & Solymosi, F. (2013). Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2. J.Photochem.Photobiol.A, 45-55 Gnanaprakash, G., Ayyappan, S., Jayakumar, T., Philip, J., & Raj, B. (2006). Magnetic nanoparticles with enhanced γ -Fe2O3 to α-Fe2O phase transition temperature. Nanotechnology, 5851–5857. Hilonga, A., Kim, J.-K., Sarawade, P. B., Quang, D. V., Shao, G. N., Elineema, G., & Kim, H. T. (2012). BET study of silver-doped silica based on an inexpensive method. Materials Letters, 168-170. Hosseini, S. A., Niaei, A., & Salari, D. (2011). Production of γ-Al2O3from Kaolin . Open Journal of Physical Chemistry, 23-27 Hu, B., & Yao, M. (2014). Optical properties of amorphous A Huabing , Y., Tianyou , P., Dingning , K., & Dai , K. (2008). Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy, 672-678. J.C, C., M.A, A., Marinas A, M. J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: Genera, 120-127. Jeffrey , L. M., Wan, R. W., & Mohammad, K. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 5233-5244. Jiang, i., Luo, Y., Zhang, F., Guo, L., & Ni, L. (2013). Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2microspheres. Applied Surface Science, 448-456. Jiaxiu, G. (2013). Study of Pt–Rh/CeO2–ZrO2–MxOy (M = Y, La)/Al2O3 three-way catalysts. Applied Surface Science, 527-535. Kai, Y., Guosheng, W., Cody, J., Jiali, W., & Aicheng, C. (2014). Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Applied Catalysis B: Environmental, , 148– 149 Kwak, B. S. (2009). Enhanced hydrogen production from methanol/water photosplitting in TiO2 including Pd component. Bulletin of the Korean Chemical Society, 1047-1053. 260398 TE07286 |
url |
http://hdl.handle.net/10818/15675 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.publisher.none.fl_str_mv |
Universidad de la Sabana |
dc.publisher.program.none.fl_str_mv |
Ingeniería Química |
dc.publisher.department.none.fl_str_mv |
Facultad de Ingeniería |
publisher.none.fl_str_mv |
Universidad de la Sabana |
dc.source.none.fl_str_mv |
Universidad de La Sabana Intellectum Repositorio Universidad de La Sabana |
institution |
Universidad de la Sabana |
bitstream.url.fl_str_mv |
https://intellectum.unisabana.edu.co/bitstream/10818/15675/1/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdf https://intellectum.unisabana.edu.co/bitstream/10818/15675/2/license_rdf https://intellectum.unisabana.edu.co/bitstream/10818/15675/3/license.txt https://intellectum.unisabana.edu.co/bitstream/10818/15675/5/LAURA%20PATAQUIVA%20%28T%29%20TESIS.pdf https://intellectum.unisabana.edu.co/bitstream/10818/15675/4/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdf.txt |
bitstream.checksum.fl_str_mv |
c6b4629a75a6e7577bdf47596eded3f7 7c9ab7f006165862d8ce9ac5eac01552 f52a2cfd4df262e08e9b300d62c85cab 24acfd1369e7636545ae2b089866a098 04336ca3099d7c92925f80c300d56cd2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Intellectum Universidad de la Sabana |
repository.mail.fl_str_mv |
contactointellectum@unisabana.edu.co |
_version_ |
1811952245020819456 |
spelling |
López Vásquez, Andrés FelipeMoyano Molano, Miguel AlexanderSanchez Cardozo, John AlexanderIngeniero Químico2015-04-24T22:05:56Z2015-04-24T22:05:56Z20152015-04-24A, J, & Torres, L. (2014). Effect of calcination temperature on the textural and structural properties of Fe(III)-TiO2. Facultad de ciencias básicas, 186-195.Alagiri, M, & Sharifah Bee, A. H. (2014). Synthesis, characterization and photocatalytic application of α-Fe2O3microflower. Materials Letters, 329- 332.Albella, J. M, & Martínez-Duart, J. M. (2010). Fudamentos de electrónica física y microelectónica. Madrid: Adison Wesley/ Universidad autónoma de Madrid.Alihosseinzadeh, A, Nematollahi, B., & Rezaei, M. (2015). CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream. International Journal of Hydrogen Energy, 1809–1819.Al-Kuhaili, M, Saleem, M., & Durrani, S. (2012). Journal of Alloys and Compounds, 178-182.Amouyal, E. (2005). Photochemical production od hydrogen and oxygen from water: a reviewand state of art. Solar Energy Materials and Solar Cells, 249-276.Ashokkumar, M. (2000). An overview on semiconductor particulate system for photoconduction of hydrogen. Hydrogen Energy, 427-438.Athapon, S, Thanakorn, W., Sorapong, P., & Wisanu, P. (2013 ). Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method. Mater.Res.Bull., 3211-3217.Berna, M. L. (2009). Obtención de microencapsulados funcionales de zumo de opuntia stricta mediante secado por atomización. Universidad politécnica de CartagenaColmenares, J, Aramendía, M., Marinas, A., Marinas, J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metaldoped titania systems. Applied Catalysis A: Genera, 120-127.Desmond, F, & Tsiokos , D. S. (2015). Microplaty hematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits. Ore geology, 309-333.Faycal, A. M, Ismail, A. A., Al-Sayari, S., Bahnemann, D., Afanasev, D., & Emeline, A. (2015). Mesoporous TiO2nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photocatalytic performance. Chemical Engineering Journal, 417-424.FMC BioPolymer. (2006, 08 09). MATERIAL SAFETY SHEET DATA. Retrieved from http://msdsviewer.fmc.com/private/document.aspx?prd=2250200- B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~PROTA NAL%C2%AE%20LF%20120%20LS%20SODIUM%20ALGINATE~~Ganesh, I, Kumar, P. P, Gupta, A. K., Sekhar, P. S., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and pGazsi, A, Schubert, G., Bánsági, T., & Solymosi, F. (2013). Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2. J.Photochem.Photobiol.A, 45-55Gnanaprakash, G., Ayyappan, S., Jayakumar, T., Philip, J., & Raj, B. (2006). Magnetic nanoparticles with enhanced γ -Fe2O3 to α-Fe2O phase transition temperature. Nanotechnology, 5851–5857.Hilonga, A., Kim, J.-K., Sarawade, P. B., Quang, D. V., Shao, G. N., Elineema, G., & Kim, H. T. (2012). BET study of silver-doped silica based on an inexpensive method. Materials Letters, 168-170.Hosseini, S. A., Niaei, A., & Salari, D. (2011). Production of γ-Al2O3from Kaolin . Open Journal of Physical Chemistry, 23-27Hu, B., & Yao, M. (2014). Optical properties of amorphous AHuabing , Y., Tianyou , P., Dingning , K., & Dai , K. (2008). Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy, 672-678.J.C, C., M.A, A., Marinas A, M. J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: Genera, 120-127.Jeffrey , L. M., Wan, R. W., & Mohammad, K. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 5233-5244.Jiang, i., Luo, Y., Zhang, F., Guo, L., & Ni, L. (2013). Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2microspheres. Applied Surface Science, 448-456.Jiaxiu, G. (2013). Study of Pt–Rh/CeO2–ZrO2–MxOy (M = Y, La)/Al2O3 three-way catalysts. Applied Surface Science, 527-535.Kai, Y., Guosheng, W., Cody, J., Jiali, W., & Aicheng, C. (2014). Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Applied Catalysis B: Environmental, , 148– 149Kwak, B. S. (2009). Enhanced hydrogen production from methanol/water photosplitting in TiO2 including Pd component. Bulletin of the Korean Chemical Society, 1047-1053.http://hdl.handle.net/10818/15675260398TE0728660 páginas incluye indice ilustraciones, diagramas y fotografíasEn el presente estudio se sintetizaron microesferas de arenas negras para la producción fotocatalítica de hidrógeno. Las arenas negras se obtuvieron de las playas de Santa Marta (Colombia), la muestra fue separada magnéticamente, molida y tamizada por malla 53 µm. Las microesferas se elaboraron en una matriz de alginato de sodio al variando la relación entre alginato:mineral 9:1, 8:2 y 7:3, seleccionando esta última como objeto de estudio debido a su mayor resistencia mecánica. Posteriormente se caracterizó su composición química, morfología, respuesta óptica y estructura mediante las técnicas XRF, SEM-EDX, espectrofotometría UV-VIS y FTIR respectivamente, determinando que en su composición existen agentes fotocatalíticamente activos como el TiO2 y α-Fe2O3 y que su gap directo permitido es 2.24 eV equivalente a una longitud de onda de 553 nm-1 la cual absorbe en el espectro visible. Finalmente se realizaron ensayos fotocatalíticos determinando que el comportamiento de la tasa de producción de hidrógeno es inversamente proporcional a la concentración de microesferas.Universidad de la SabanaIngeniería QuímicaFacultad de IngenieríaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Universidad de La SabanaIntellectum Repositorio Universidad de La SabanaHidrógeno -- Producción -- ColombiaFotocatálisisHidrógeno -- MetabolismoDesarrollo, caracterización y utilización de micro esferas basadas en arena negra para la producción fotocatalítica de hidrógeno.bachelorThesisTesis de pregradopublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_7a1fspaORIGINALMiguel Alexander Moyano Molano (tesis).pdfMiguel Alexander Moyano Molano (tesis).pdfVer documento en PDFapplication/pdf1840154https://intellectum.unisabana.edu.co/bitstream/10818/15675/1/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdfc6b4629a75a6e7577bdf47596eded3f7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81223https://intellectum.unisabana.edu.co/bitstream/10818/15675/2/license_rdf7c9ab7f006165862d8ce9ac5eac01552MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/15675/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD53LAURA PATAQUIVA (T) TESIS.pdfLAURA PATAQUIVA (T) TESIS.pdfapplication/pdf1509399https://intellectum.unisabana.edu.co/bitstream/10818/15675/5/LAURA%20PATAQUIVA%20%28T%29%20TESIS.pdf24acfd1369e7636545ae2b089866a098MD55TEXTMiguel Alexander Moyano Molano (tesis).pdf.txtMiguel Alexander Moyano Molano (tesis).pdf.txtExtracted Texttext/plain60https://intellectum.unisabana.edu.co/bitstream/10818/15675/4/Miguel%20Alexander%20Moyano%20Molano%20%28tesis%29.pdf.txt04336ca3099d7c92925f80c300d56cd2MD5410818/15675oai:intellectum.unisabana.edu.co:10818/156752017-10-06 09:31:52.085Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K |