Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos
87 páginas
- Autores:
-
Curtidor Castellanos, Hernando
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad de la Sabana
- Repositorio:
- Repositorio Universidad de la Sabana
- Idioma:
- spa
- OAI Identifier:
- oai:intellectum.unisabana.edu.co:10818/22983
- Acceso en línea:
- http://hdl.handle.net/10818/22983
- Palabra clave:
- Eritrocitos
Malaria -- Colombia
Plasmodium -- Malaria
Proteínas de la sangre -- Malaria
Parásitos -- Malaria
Medicamentos -- Malaria
Mosquitos -- Erradicación -- Malaria
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
REPOUSABA2_cee7da828876a608f352d68ee49f72a6 |
---|---|
oai_identifier_str |
oai:intellectum.unisabana.edu.co:10818/22983 |
network_acronym_str |
REPOUSABA2 |
network_name_str |
Repositorio Universidad de la Sabana |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos |
title |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos |
spellingShingle |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos Eritrocitos Malaria -- Colombia Plasmodium -- Malaria Proteínas de la sangre -- Malaria Parásitos -- Malaria Medicamentos -- Malaria Mosquitos -- Erradicación -- Malaria |
title_short |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos |
title_full |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos |
title_fullStr |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos |
title_full_unstemmed |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos |
title_sort |
Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos |
dc.creator.fl_str_mv |
Curtidor Castellanos, Hernando |
dc.contributor.advisor.none.fl_str_mv |
Patarroyo Gutiérrez, Manuel Alfonso |
dc.contributor.author.none.fl_str_mv |
Curtidor Castellanos, Hernando |
dc.subject.es_CO.fl_str_mv |
Eritrocitos Malaria -- Colombia Plasmodium -- Malaria Proteínas de la sangre -- Malaria Parásitos -- Malaria Medicamentos -- Malaria Mosquitos -- Erradicación -- Malaria |
topic |
Eritrocitos Malaria -- Colombia Plasmodium -- Malaria Proteínas de la sangre -- Malaria Parásitos -- Malaria Medicamentos -- Malaria Mosquitos -- Erradicación -- Malaria |
description |
87 páginas |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014-03-14 |
dc.date.accessioned.none.fl_str_mv |
4/5/2016 9:10 |
dc.date.available.none.fl_str_mv |
4/5/2016 9:10 |
dc.type.es_CO.fl_str_mv |
doctoralThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.local.none.fl_str_mv |
Tesis de doctorado |
dc.type.hasVersion.es_CO.fl_str_mv |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10818/22983 |
dc.identifier.local.none.fl_str_mv |
259158 TE06382 |
url |
http://hdl.handle.net/10818/22983 |
identifier_str_mv |
259158 TE06382 |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de La Sabana |
dc.source.es_CO.fl_str_mv |
instname:Universidad de La Sabana reponame:Intellectum Repositorio Universidad de La Sabana |
instname_str |
Universidad de La Sabana |
institution |
Universidad de la Sabana |
reponame_str |
Intellectum Repositorio Universidad de La Sabana |
collection |
Intellectum Repositorio Universidad de La Sabana |
bitstream.url.fl_str_mv |
https://intellectum.unisabana.edu.co/bitstream/10818/22983/4/Tesis-Hernando%20Curtidor%20C.pdf.txt https://intellectum.unisabana.edu.co/bitstream/10818/22983/2/license_rdf https://intellectum.unisabana.edu.co/bitstream/10818/22983/3/license.txt https://intellectum.unisabana.edu.co/bitstream/10818/22983/5/Hernando%20Curtidor%20Castellanos%20%28Carta%29.pdf https://intellectum.unisabana.edu.co/bitstream/10818/22983/1/Tesis-Hernando%20Curtidor%20C.pdf |
bitstream.checksum.fl_str_mv |
bfca7c91f1ca3cb6b9bd4eb58bb2efda 7c9ab7f006165862d8ce9ac5eac01552 f52a2cfd4df262e08e9b300d62c85cab 1bd528d5b68d4eab8560a30190c4bad8 1a95e0aa9ba629cff6277089795695a8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Intellectum Universidad de la Sabana |
repository.mail.fl_str_mv |
contactointellectum@unisabana.edu.co |
_version_ |
1811952253560422400 |
spelling |
Patarroyo Gutiérrez, Manuel AlfonsoCurtidor Castellanos, Hernando4/5/2016 9:104/5/2016 9:102014-03-14http://hdl.handle.net/10818/22983259158TE0638287 páginasIn this research, advanced control strategies were designed under the Active Disturbance Rejection Control (ADRC) approach to increase the biomass production in microalgae cultures. For the above, from a control frame of reference, the development was envisaged into two stages, control and optimization. The first stage resulted in three different controllers designs: two ADRC strategies assisted by observer and a Model-Free Control (MFC). In each case, the aim was to guarantee the tracking of the reference signal. In the second stage, the design of two optimization strategies were achieves to increase the biomass production, offline and on-line. Comparing, at a simulation level, these strategies with other existing proposals, the following was found: 1) the ADRC strategies assisted by observer had a few dependence on the model, letting us to work with an approximate model that only required knowing of the system order and the input gain; 2) the off-line optimization, despite maximizing the biomass production, required knowing the model and 3) the proposal that combines MFC with on-line optimization, may act on any microalgae culture since it does not need a model. All the proposals are robust front to disturbances and variation of parameters allowing to increase the biomass production when an optimization strategy is used.La malaria es una de las enfermedades infecciosas más prevalentes y mortales a nivel mundial. Cinco especies de Plasmodium (protozoario intracelular obligado del filo Apicomplexa) infectan al humano, siendo Plasmodium falciparum la especie responsable de las manifestaciones clínicas más severas, con amplia distribución en las zonas tropicales y subtropicales del África Subsahariana. Según los estimados de la Organización Mundial de la Salud (OMS), en el año 2010 se presentaron alrededor de 216 millones de casos de malaria y cerca de un millón de muertes, principalmente de niños menores de 5 años. Esta cifra se ha incrementado en los últimos años, luego de la aparición de variantes del parásito que son resistentes a drogas antimaláricas y por la resistencia a los insectidas por parte del mosquito. Es por lo tanto urgente el desarrollo de medidas de control efectivas que permitan la erradicación de esta parasitosis.application/pdfspaUniversidad de La SabanaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2instname:Universidad de La Sabanareponame:Intellectum Repositorio Universidad de La SabanaEritrocitosMalaria -- ColombiaPlasmodium -- MalariaProteínas de la sangre -- MalariaParásitos -- MalariaMedicamentos -- MalariaMosquitos -- Erradicación -- MalariaIdentificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanosdoctoralThesisTesis de doctoradopublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_db06WHO, World Malaria Report 2009, W.H. Organization, Editor 2011, World Health Organization.Good, M.F., Towards a blood-stage vaccine for malaria: are we following all the leads? Nat Rev Immunol, 2001. 1(2): p. 117-25.Ridley, R.G., Malaria: to kill a parasite. Nature, 2003. 424(6951): p. 887-9.Patarroyo, M.E., et al., A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature, 1988. 332(6160): p. 158-61.Patarroyo, M.E. and M.A. Patarroyo, Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res, 2008. 41(3): p. 377-86.Patarroyo, M.E., A. Bermudez, and M.A. Patarroyo, Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev, 2011.Tsuji, M. and F. Zavala, Peptide-based subunit vaccines against pre-erythrocytic stages of malaria parasites. Mol Immunol, 2001. 38(6): p. 433-42.Matuschewski, K., Vaccine development against malaria. Curr Opin Immunol, 2006. 18(4): p. 449-57.Gardner, M.J., et al., Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 2002. 419(6906): p. 498-511.Foth, B.J., et al., Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics, 2011.Sims, P.F. and J.E. Hyde, Proteomics of the human malaria parasite Plasmodium falciparum. Expert Rev Proteomics, 2006. 3(1): p. 87-95.Bozdech, Z., et al., The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol, 2003. 1(1): p. E5.Proellocks, N.I., R.L. Coppel, and K.L. Waller, Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol, 2010. 26(6): p. 297-304.Cowman, A.F., et al., Functional analysis of Plasmodium falciparum merozoite antigens: implications for erythrocyte invasion and vaccine development. Philos Trans R Soc Lond B Biol Sci, 2002. 357(1417): p. 25-33.Alexander, D.L., et al., Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog, 2005. 1(2): p. e17.Baum, J., et al., Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol, 2008. 24(12): p. 557-63.Straub, K.W., et al., Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol, 2009. 11(4): p. 590-603.Kaneko, O., Erythrocyte invasion: vocabulary and grammar of the Plasmodium rhoptry. Parasitol Int, 2007. 56(4): p. 255-62.Alexander, D.L., et al., Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. Eukaryot Cell, 2006. 5(7): p. 1169-73.Cao, J., et al., Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int, 2009. 58(1): p. 29-35.Morahan, B.J., et al., Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol, 2009. 122(4): p. 280-8.Proellocks, N.I., et al., Characterisation of PfRON6, a Plasmodium falciparum rhoptry neck protein with a novel cysteine-rich domain. Int J Parasitol, 2009. 39(6): p. 683-92.Collins, C.R., et al., An inhibitory antibody blocks interactions between components of the malarial invasion machinery. PLoS Pathog, 2009. 5(1): p. e1000273.WHO, World Malaria Report 2012, W.H. Organization, Editor 2012, World Health Organization.Rowe, J.A., et al., Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med, 2009. 11: p. e16.Liu, L., et al., Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet, 2012. 379(9832): p. 2151-61.Murray, C.J., et al., Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet, 2012. 379(9814): p. 413-31.Cogswell, F.B., The hypnozoite and relapse in primate malaria. Clin Microbiol Rev, 1992. 5(1): p. 26-35.Sabbatani, S., S. Fiorino, and R. Manfredi, The emerging of the fifth malaria parasite (Plasmodium knowlesi): a public health concern? Braz J Infect Dis, 2010. 14(3): p. 299- 309Antinori, S., et al., Plasmodium knowlesi: the emerging zoonotic malaria parasite. Acta Trop, 2013. 125(2): p. 191-201.Grupo ETV - INS, Semana Epidemiológica 31 (28 de julio – 3 de agosto de 2013). 2013. 10 201Feachem, R.G., et al., Shrinking the malaria map: progress and prospects. Lancet, 2010. 376(9752): p. 1566-78Gamble, C., et al., Insecticide-treated nets for the prevention of malaria in pregnancy: a systematic review of randomised controlled trials. PLoS Med, 2007. 4(3): p. e107.Miller, L.H., et al., Malaria biology and disease pathogenesis: insights for new treatments. Nat Med, 2013. 19(2): p. 156-67.Schwartz, L., et al., A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J, 2012. 11: p. 11.Tyagi, R.K., N.K. Garg, and T. Sahu, Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release, 2012. 162(1): p. 242-54.Patarroyo, M.E., A. Bermudez, and M.A. Patarroyo, Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunitbased vaccine development. Chem Rev, 2011. 111(5): p. 3459-507.Rodriguez, L.E., et al., Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev, 2008. 108(9): p. 3656-705.Curtidor, H., et al., Functional, immunological and three-dimensional analysis of chemically synthesised sporozoite peptides as components of a fully-effective antimalarial vaccine. Curr Med Chem, 2011. 18(29): p. 4470-502.Curtidor, H., et al., Plasmodium falciparum acid basic repeat antigen (ABRA) peptides: erythrocyte binding and biological activity. Vaccine, 2001. 19(31): p. 4496-504.Patarroyo, M.A., et al., 3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria. PLoS One, 2010. 5(3): p. e9771Gonzalez, V., et al., Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe, 2009. 5(3): p. 259-72.Plattner, F. and D. Soldati-Favre, Hijacking of host cellular functions by the Apicomplexa. Annu Rev Microbiol, 2008. 62: p. 471-87.Prudencio, M., A. Rodriguez, and M.M. Mota, The silent path to thousands of merozoites: the Plasmodium liver stage. Nat Rev Microbiol, 2006. 4(11): p. 849-56.Gueirard, P., et al., Development of the malaria parasite in the skin of the mammalian host. Proc Natl Acad Sci U S A, 2010. 107(43): p. 18640-5.Pradel, G. and U. Frevert, Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology, 2001. 33(5): p. 1154-65.Mota, M.M., J.C. Hafalla, and A. Rodriguez, Migration through host cells activates Plasmodium sporozoites for infection. Nat Med, 2002. 8(11): p. 1318-22.Frevert, U., et al., Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J Exp Med, 1993. 177(5): p. 1287-98.Muller, H.M., E. Scarselli, and A. Crisanti, Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum in parasite-host cell interactions. Parassitologia, 1993. 35 Suppl: p. 69-72.Kappe, S.H., K. Kaiser, and K. Matuschewski, The Plasmodium sporozoite journey: a rite of passage. Trends Parasitol, 2003. 19(3): p. 135-43.Ishino, T., et al., Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol, 2004. 2(1): p. E4.Ishino, T., Y. Chinzei, and M. Yuda, A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell Microbiol, 2005. 7(2): p. 199-208.Kariu, T., et al., CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol Microbiol, 2006. 59(5): p. 1369-79Moreira, C.K., et al., The Plasmodium TRAP/MIC2 family member, TRAP-Like Protein (TLP), is involved in tissue traversal by sporozoites. Cell Microbiol, 2008. 10(7): p. 1505- 16Bhanot, P., et al., A surface phospholipase is involved in the migration of plasmodium sporozoites through cells. J Biol Chem, 2005. 280(8): p. 6752-60.Sultan, A.A., et al., TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell, 1997. 90(3): p. 511-22.Silvie, O., et al., A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Biol Chem, 2004. 279(10): p. 9490-6.Jethwaney, D., et al., Fetuin-A, a hepatocyte-specific protein that binds Plasmodium berghei thrombospondin-related adhesive protein: a potential role in infectivity. Infect Immun, 2005. 73(9): p. 5883-91Silvie, O., et al., Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med, 2003. 9(1): p. 93-6.Ghosh, A., M.J. Edwards, and M. Jacobs-Lorena, The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitol Today, 2000. 16(5): p. 196-201.Fujioka, H. and M. Aikawa, Structure and life cycle. Chem Immunol, 2002. 80: p. 1-26Cowman, A.F., D. Berry, and J. Baum, The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol, 2012. 198(6): p. 961-71Bannister, L.H. and I.W. Sherman, Plasmodium. eLS. John Wiley & Sons Ltd, Chichester, 2009.Good, M.F., D.C. Kaslow, and L.H. Miller, Pathways and strategies for developing a malaria blood-stage vaccine. Annu Rev Immunol, 1998. 16: p. 57-87.Sturm, A., et al., Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science, 2006. 313(5791): p. 1287-90.Baer, K., et al., Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog, 2007. 3(11): p. e171.Trager, W. and J.B. Jensen, Human malaria parasites in continuous culture. Science, 1976. 193(4254): p. 673-5.Oakley, M.S., et al., Clinical and molecular aspects of malaria fever. Trends Parasitol, 2011. 27(10): p. 442-9.Bannister, L.H., et al., A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol Today, 2000. 16(10): p. 427-33.Stevenson, M.M. and E.M. Riley, Innate immunity to malaria. Nat Rev Immunol, 2004. 4(3): p. 169-80Cowman, A.F. and B.S. Crabb, Invasion of red blood cells by malaria parasites. Cell, 2006. 124(4): p. 755-66.Barnwell, J.W.y.G., M.R., Invasion of Vertebrate Cells: Erythrocytes. In: Malaria: Parasite Biology, Pathogenesis and Protection. 1998: p. 93-120.Aikawa, M., et al., Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol, 1978. 77(1): p. 72-82.Bannister, L.H., et al., Structure and invasive behaviour of Plasmodium knowlesi merozoites in vitro. Parasitology, 1975. 71(3): p. 483-91.Ladda, R., M. Aikawa, and H. Sprinz, Penetration of erythrocytes by merozoites of mammalian and avian malarial parasites. J Parasitol, 1969. 55(3): p. 633-44.Preiser, P., et al., The apical organelles of malaria merozoites: host cell selection, invasion, host immunity and immune evasion. Microbes Infect, 2000. 2(12): p. 1461-77.Yeoh, S., et al., Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell, 2007. 131(6): p. 1072-83.Langreth, S.G., et al., Fine structure of human malaria in vitro. J Protozool, 1978. 25(4): p. 443-52.Bannister, L.H., et al., Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J Cell Sci, 2003. 116(Pt 18): p. 3825-34.Kats, L.M., et al., Plasmodium rhoptries: how things went pear-shaped. Trends Parasitol, 2006. 22(6): p. 269-76Bannister, L.H., et al., Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts. Parasitology, 2000. 121 ( Pt 3): p. 273-87.Speer, C.A., et al., Comparative ultrastructure of tachyzoites, bradyzoites, and tissue cysts of Neospora caninum and Toxoplasma gondii. Int J Parasitol, 1999. 29(10): p. 1509- 19Blackman, M.J. and L.H. Bannister, Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol Biochem Parasitol, 2001. 117(1): p. 11-25Bradley, P.J., et al., Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem, 2005. 280(40): p. 34245-58.Curtidor, H., et al., Identification of the Plasmodium falciparum rhoptry neck protein 5 (PfRON5). Gene, 2011. 474(1-2): p. 22-8.Ito, D., et al., Plasmodial ortholog of Toxoplasma gondii rhoptry neck protein 3 is localized to the rhoptry body. Parasitol Int, 2011. 60(2): p. 132-8.O'Keeffe, A.H., et al., A novel Sushi domain-containing protein of Plasmodium falciparum. Mol Biochem Parasitol, 2005. 140(1): p. 61-8.Srivastava, A., et al., Localization of apical sushi protein in Plasmodium falciparum merozoites. Mol Biochem Parasitol, 2010. 174(1): p. 66-9.Galinski, M.R., et al., A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell, 1992. 69(7): p. 1213-26.Rayner, J.C., et al., A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med, 2001. 194(11): p. 1571-81.Triglia, T., et al., Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun, 2001. 69(2): p. 1084-92Kaneko, O., et al., Gene structure and expression of a Plasmodium falciparum 220-kDa protein homologous to the Plasmodium vivax reticulocyte binding proteins. Mol Biochem Parasitol, 2002. 121(2): p. 275-8.Baum, J., et al., Reticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol, 2009. 39(3): p. 371-80.Crosnier, C., et al., Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature, 2011. 480(7378): p. 534-7Spadafora, C., et al., Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog, 2010. 6(6): p. e1000968.Tham, W.H., et al., Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci U S A, 2010. 107(40): p. 17327-32.Adams, J.H., et al., A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci U S A, 1992. 89(15): p. 7085-9.Sim, B.K., et al., Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science, 1994. 264(5167): p. 1941-4Sim, B.K., et al., Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol, 1990. 111(5 Pt 1): p. 1877-84.Mayer, D.C., et al., Characterization of a Plasmodium falciparum erythrocyte-binding protein paralogous to EBA-175. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5222-7.Thompson, J.K., et al., A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes. Mol Microbiol, 2001. 41(1): p. 47-58.Gilberger, T.W., et al., A novel erythrocyte binding antigen-175 paralogue from Plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J Biol Chem, 2003. 278(16): p. 14480-6.Peterson, D.S. and T.E. Wellems, EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem Parasitol, 2000. 105(1): p. 105-13.Peterson, M.G., et al., Integral membrane protein located in the apical complex of Plasmodium falciparum. Mol Cell Biol, 1989. 9(7): p. 3151-4.Bei, A.K. and M.T. Duraisingh, Functional analysis of erythrocyte determinants of Plasmodium infection. Int J Parasitol, 2012. 42(6): p. 575-82.Kato, K., et al., Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci U S A, 2005. 102(15): p. 5552-7Srinivasan, P., et al., Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A, 2011. 108(32): p. 13275-80.Lamarque, M., et al., The RON2-AMA1 interaction is a critical step in moving junctiondependent invasion by apicomplexan parasites. PLoS Pathog, 2011. 7(2): p. e1001276.Lamarque, M., et al., The RON2-AMA1 interaction is a critical step in moving junctiondependent invasion by apicomplexan parasites. PLoS Pathog, 2011. 7(2): p. e1001276.Besteiro, S., et al., Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog, 2009. 5(2): p. e1000309.Trager, W., et al., Transfer of a dense granule protein of Plasmodium falciparum to the membrane of ring stages and isolation of dense granules. Infect Immun, 1992. 60(11): p. 4656-61.Koussis, K., et al., A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J, 2009. 28(6): p. 725-35Dvorak, J.A., et al., Invasion of erythrocytes by malaria merozoites. Science, 1975. 187(4178): p. 748-50Singh, S., et al., Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog, 2010. 6(2): p. e1000746.Carruthers, V.B. and L.D. Sibley, Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol, 1997. 73(2): p. 114-23.Boothroyd, J.C. and J.F. Dubremetz, Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol, 2008. 6(1): p. 79-88.Harvey, K.L., P.R. Gilson, and B.S. Crabb, A model for the progression of receptorligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol, 2012. 42(6): p. 567-73.Miller, L.H., et al., Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J Exp Med, 1979. 149(1): p. 172-84.Kauth, C.W., et al., Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem, 2006. 281(42): p. 31517-27.Li, X., et al., A co-ligand complex anchors Plasmodium falciparum merozoites to the erythrocyte invasion receptor band 3. J Biol Chem, 2004. 279(7): p. 5765-71.Ranjan, R., et al., Proteome analysis reveals a large merozoite surface protein-1 associated complex on the Plasmodium falciparum merozoite surface. J Proteome Res, 2011. 10(2): p. 680-91.Lew, V.L. and T. Tiffert, Is invasion efficiency in malaria controlled by pre-invasion events? Trends Parasitol, 2007. 23(10): p. 481-4.McCallum-Deighton, N. and A.A. Holder, The role of calcium in the invasion of human erythrocytes by Plasmodium falciparum. Mol Biochem Parasitol, 1992. 50(2): p. 317-23.Treeck, M., et al., Caught in action: mechanistic insights into antibody-mediated inhibition of Plasmodium merozoite invasion. Trends Parasitol, 2009. 25(11): p. 494-7Mitchell, G.H., et al., Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect Immun, 2004. 72(1): p. 154-8.Triglia, T., et al., Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol, 2000. 38(4): p. 706-18.Li, J. and E.T. Han, Dissection of the Plasmodium vivax reticulocyte binding-like proteins (PvRBPs). Biochem Biophys Res Commun, 2012. 426(1): p. 1-6.Kappe, S.H., et al., That was then but this is now: malaria research in the time of an eradication agenda. Science, 2010. 328(5980): p. 862-6.Mital, J., et al., Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell, 2005. 16(9): p. 4341-9.Howell, S.A., et al., Proteolytic processing and primary structure of Plasmodium falciparum apical membrane antigen-1. J Biol Chem, 2001. 276(33): p. 31311-20Healer, J., et al., Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. Infect Immun, 2002. 70(10): p. 5751-8.Srinivasan, P., et al., Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun, 2013. 4: p. 2261.Chitnis, C.E., et al., The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med, 1996. 184(4): p. 1531-6.Gaur, D., D.C. Mayer, and L.H. Miller, Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol, 2004. 34(13-14): p. 1413-29Taylor, H.M., M. Grainger, and A.A. Holder, Variation in the expression of a Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun, 2002. 70(10): p. 5779-89.Duraisingh, M.T., et al., Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J, 2003. 22(5): p. 1047-57.Gaur, D., et al., Plasmodium falciparum is able to invade erythrocytes through a trypsinresistant pathway independent of glycophorin B. Infect Immun, 2003. 71(12): p. 6742-6.Pasvol, G., J.S. Wainscoat, and D.J. Weatherall, Erythrocytes deficiency in glycophorin resist invasion by the malarial parasite Plasmodium falciparum. Nature, 1982. 297(5861): p. 64-6.Iyer, J., et al., Invasion of host cells by malaria parasites: a tale of two protein families. Mol Microbiol, 2007. 65(2): p. 231-49Gunalan, K., et al., The role of the reticulocyte-binding-like protein homologues of Plasmodium in erythrocyte sensing and invasion. Cell Microbiol, 2013. 15(1): p. 35-44.Blackman, M.J., et al., A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med, 1990. 172(1): p. 379-82Baker, R.P., R. Wijetilaka, and S. Urban, Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog, 2006. 2(10): p. e113.Bannister, L.H. and G.H. Mitchell, The fine structure of secretion by Plasmodium knowlesi merozoites during red cell invasion. J Protozool, 1989. 36(4): p. 362-7Klotz, F.W., et al., A 60-kDa Plasmodium falciparum protein at the moving junction formed between merozoite and erythrocyte during invasion. Mol Biochem Parasitol, 1989. 36(2): p. 177-85Lebrun, M., et al., The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol, 2005. 7(12): p. 1823-33.Straub, K.W., et al., The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog, 2011. 7(3): p. e1002007.Carruthers, V. and J.C. Boothroyd, Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol, 2007. 10(1): p. 83-9.Richard, D., et al., Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem, 2010. 285(19): p. 14815-22Knuepfer, E., et al., RON12, a novel Plasmodium-specific rhoptry neck protein important for parasite proliferation. Cell Microbiol, 2013.Hans, N., et al., Identification of novel rhoptry neck protein of Plasmodium falciparum. Mol Biochem Parasitol, 2013. 188(1): p. 34-9.Tyler, J.S. and J.C. Boothroyd, The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog, 2011. 7(2): p. e1001282.Vulliez-Le Normand, B., et al., Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog, 2012. 8(6): p. e1002755Hossain, M.E., S. Dhawan, and A. Mohmmed, The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitol Res, 2012. 110(5): p. 1711-21.Tonkin, M.L., et al., Host cell invasion by apicomplexan parasites: insights from the costructure of AMA1 with a RON2 peptide. Science, 2011. 333(6041): p. 463-7.Giovannini, D., et al., Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe, 2011. 10(6): p. 591-602Wheelan, S.J., D.M. Church, and J.M. Ostell, Spidey: a tool for mRNA-to-genomic alignments. Genome Res, 2001. 11(11): p. 1952-7.Aurrecoechea, C., et al., PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res, 2009. 37(Database issue): p. D539-43.Chomczynski, P., A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques, 1993. 15(3): p. 532-4, 536-7Kall, L., A. Krogh, and E.L. Sonnhammer, An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics, 2005. 21 Suppl 1: p. i251-7.Quevillon, E., et al., InterProScan: protein domains identifier. Nucleic Acids Res, 2005. 33(Web Server issue): p. W116-20.Kall, L., A. Krogh, and E.L. Sonnhammer, A combined transmembrane topology and signal peptide prediction method. J Mol Biol, 2004. 338(5): p. 1027-36.Hofmann K and W. Stoffel, TMbase - a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler, 1993. 374: p. 166Krogh, A., et al., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001. 305(3): p. 567-80.Arai, M., et al., ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res, 2004. 32(Web Server issue): p. W390-3.Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994. 22(22): p. 4673-80.Deleage, G., et al., ANTHEPROT: an integrated protein sequence analysis software with client/server capabilities. Comput Biol Med, 2001. 31(4): p. 259-67.Larsen, J.E., O. Lund, and M. Nielsen, Improved method for predicting linear B-cell epitopes. Immunome Res, 2006. 2: p. 2.Merrifield, R.B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963. 85: p. 2149–2154.Houghten, R.A., General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A, 1985. 82(15): p. 5131-5Lioy, E., et al., Synthesis, Biological, and Immunological Properties of Cyclic Peptides from Plasmodium Falciparum Merozoite Surface Protein-1 This work was supported by a long-term fellowship of the Human Frontier Science Program Organization (HFSPO-LT 25/97) and by a Research Grant from the Roche Research Foundation. Angew Chem Int Ed Engl, 2001. 40(14): p. 2631-2635.Patarroyo, M.E., et al., Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature, 1987. 328(6131): p. 629-32.Urquiza, M., et al., Identification of Plasmodium falciparum MSP-1 peptides able to bind to human red blood cells. Parasite Immunol, 1996. 18(10): p. 515-26.Torres, M.H., et al., Modified merozoite surface protein-1 peptides with short alpha helical regions are associated with inducing protection against malaria. Eur J Biochem, 2003. 270(19): p. 3946-52.Pinzon, C.G., et al., Studies of Plasmodium falciparum rhoptry-associated membrane antigen (RAMA) protein peptides specifically binding to human RBC. Vaccine, 2008. 26(6): p. 853-62.Wilcoxon, F., Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1945. 1: p. 80-83.Merrifield, R., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc, 1963. 85: p. 2149Tam, J.P., W.F. Heath, and R.B. Merrifield, SN 1 and SN 2 mechanisms for the deprotection of synthetic peptides by hydrogen fluoride. Studies to minimize the tyrosine alkylation side reaction. Int J Pept Protein Res, 1983. 21(1): p. 57-65.Stothard, P., The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques, 2000. 28(6): p. 1102, 1104.Roccatano, D., et al., Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc Natl Acad Sci U S A, 2002. 99(19): p. 12179-84.Sreerama, N., S.Y. Venyaminov, and R.W. Woody, Estimation of the number of alphahelical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci, 1999. 8(2): p. 370-80.Compton, L.A. and W.C. Johnson, Jr., Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem, 1986. 155(1): p. 155-67Lambros, C. and J.P. Vanderberg, Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol, 1979. 65(3): p. 418-20.van der Heyde, H.C., et al., Use of hydroethidine and flow cytometry to assess the effects of leukocytes on the malarial parasite Plasmodium falciparum. Clin Diagn Lab Immunol, 1995. 2(4): p. 417-25Wyatt, C.R., W. Goff, and W.C. Davis, A flow cytometric method for assessing viability of intraerythrocytic hemoparasites. J Immunol Methods, 1991. 140(1): p. 23-30.Manske, M., et al., Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature, 2012. 487(7407): p. 375-9.Takala, S.L. and C.V. Plowe, Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming 'vaccine resistant malaria'. Parasite Immunol, 2009. 31(9): p. 560-73Escalante, A.A., A.A. Lal, and F.J. Ayala, Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics, 1998. 149(1): p. 189-202.Nicholas, K.B. and J. Nicholas, H.B., GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author. http://www.psc.edu/biomed/genedoc[Online.], 1997Ogun, S.A. and A.A. Holder, Plasmodium yoelii: brefeldin A-sensitive processing of proteins targeted to the rhoptries. Exp Parasitol, 1994. 79(3): p. 270-8Topolska, A.E., et al., Characterization of a membrane-associated rhoptry protein of Plasmodium falciparum. J Biol Chem, 2004. 279(6): p. 4648-56.Stewart, M.J., S. Schulman, and J.P. Vanderberg, Rhoptry secretion of membranous whorls by Plasmodium falciparum merozoites. Am J Trop Med Hyg, 1986. 35(1): p. 37- 44.Cooper, J.A., et al., The 140/130/105 kilodalton protein complex in the rhoptries of Plasmodium falciparum consists of discrete polypeptides. Mol Biochem Parasitol, 1988. 29(2-3): p. 251-60.Zuccala, E.S., et al., Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. PLoS One, 2012. 7(9): p. e46160Counihan, N.A., et al., Plasmodium rhoptry proteins: why order is important. Trends Parasitol, 2013. 29(5): p. 228-36.Arevalo-Pinzon, G., et al., A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine, 2012. 30(3): p. 637-46.Garcia, J., et al., Conserved regions of the Plasmodium falciparum rhoptry-associated protein 3 mediate specific host-pathogen interactions during invasion of red blood cells. Peptides, 2010. 31(12): p. 2165-72.Harrison, T., et al., Erythrocyte G protein-coupled receptor signaling in malarial infection. Science, 2003. 301(5640): p. 1734-6.Attie, A.D. and R.T.Facultad de IngenieríaUniversidad de La SabanaDoctorado en BiocienciasDoctor en BiocienciasTEXTTesis-Hernando Curtidor C.pdf.txtTesis-Hernando Curtidor C.pdf.txtExtracted Texttext/plain198486https://intellectum.unisabana.edu.co/bitstream/10818/22983/4/Tesis-Hernando%20Curtidor%20C.pdf.txtbfca7c91f1ca3cb6b9bd4eb58bb2efdaMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81223https://intellectum.unisabana.edu.co/bitstream/10818/22983/2/license_rdf7c9ab7f006165862d8ce9ac5eac01552MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/22983/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD53Hernando Curtidor Castellanos (Carta).pdfHernando Curtidor Castellanos (Carta).pdfapplication/pdf71275https://intellectum.unisabana.edu.co/bitstream/10818/22983/5/Hernando%20Curtidor%20Castellanos%20%28Carta%29.pdf1bd528d5b68d4eab8560a30190c4bad8MD55ORIGINALTesis-Hernando Curtidor C.pdfTesis-Hernando Curtidor C.pdfVer documento en PDFapplication/pdf4228748https://intellectum.unisabana.edu.co/bitstream/10818/22983/1/Tesis-Hernando%20Curtidor%20C.pdf1a95e0aa9ba629cff6277089795695a8MD5110818/22983oai:intellectum.unisabana.edu.co:10818/229832022-02-18 12:08:50.366Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K |