Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2

49 Páginas.

Autores:
Camargo Páez, Juan David
Manrique Cuevas, Adriana Milena
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de la Sabana
Repositorio:
Repositorio Universidad de la Sabana
Idioma:
spa
OAI Identifier:
oai:intellectum.unisabana.edu.co:10818/29505
Acceso en línea:
http://hdl.handle.net/10818/29505
Palabra clave:
Ingeniería química
Ingeniería química -- Equipo y accesorios
Catalizadores de hidrotratamiento
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUSABA2_b6b14b89e331ff29517c44a98de9679d
oai_identifier_str oai:intellectum.unisabana.edu.co:10818/29505
network_acronym_str REPOUSABA2
network_name_str Repositorio Universidad de la Sabana
repository_id_str
dc.title.es_CO.fl_str_mv Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
title Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
spellingShingle Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
Ingeniería química
Ingeniería química -- Equipo y accesorios
Catalizadores de hidrotratamiento
title_short Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
title_full Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
title_fullStr Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
title_full_unstemmed Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
title_sort Integración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2
dc.creator.fl_str_mv Camargo Páez, Juan David
Manrique Cuevas, Adriana Milena
dc.contributor.advisor.none.fl_str_mv Cobo Ángel, Martha Isabel
dc.contributor.author.none.fl_str_mv Camargo Páez, Juan David
Manrique Cuevas, Adriana Milena
dc.subject.none.fl_str_mv Ingeniería química
Ingeniería química -- Equipo y accesorios
Catalizadores de hidrotratamiento
topic Ingeniería química
Ingeniería química -- Equipo y accesorios
Catalizadores de hidrotratamiento
description 49 Páginas.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-01-27T17:22:29Z
dc.date.available.none.fl_str_mv 2017-01-27T17:22:29Z
dc.date.created.none.fl_str_mv 2017
dc.date.issued.none.fl_str_mv 2017-01-27
dc.type.es_CO.fl_str_mv bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis de pregrado
dc.type.hasVersion.none.fl_str_mv publishedVersion
dc.identifier.citation.none.fl_str_mv J. E. Kang and W. W. Recker, “Measuring the inconvenience of operating an alternative fuel vehicle,” Transp. Res. Part D Transp. Environ., vol. 27, pp. 30–40, Mar. 2014.
A. Hoen and M. J. Koetse, “A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands,” Transp. Res. Part A Policy Pract., vol. 61, pp. 199–215, Mar. 2014.
B. Bej, N. C. Pradhan, and S. Neogi, “Production of hydrogen by steam reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst,” Catal. Today, vol. 237, pp. 80–88, 2014.
J. A. Calles, A. Carrero, and A. J. Vizcaíno, “Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming,” Microporous Mesoporous Mater., vol. 119, no. 1, pp. 200–207, 2009
D. Pieruccini, M. Cobo, and L. Córdoba, “Producción de hidrógeno por reformado de etanol usando el catalizador bimetálico Rh-Pt/La2O3.,” Maest. en Diseño y Gestión Procesos. Fac. Ing. Univ. La Sabana, vol. 1, 2013.
I. Uriz, G. Arzamendi, E. López, J. Llorca, and L. M. Gandía, “Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels,” Chem. Eng. J., vol. 167, no. 2–3, pp. 603–609, Mar. 2011.
L. Ilieva et al., “Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of preparation method and nature of dopant,” Catal. Today, vol. 158, no. 1–2, pp. 44–55, Dec. 2010.
M. Manzoli, A. Chiorino, and F. Boccuzzi, “Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2,” Appl. Catal. B Environ., vol. 57, no. 3, pp. 201–209, May 2005.
X. Liao, W. Chu, X. Dai, and V. Pitchon, “Bimetallic Au–Cu supported on ceria for PROX reaction: Effects of Cu/Au atomic ratios and thermal pretreatments,” Appl. Catal. B Environ., vol. 142–143, pp. 25–37, Oct. 2013.
A. Luengnaruemitchai, S. Osuwan, and E. Gulari, “Comparative studies of low-temperature water–gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts,” Catal. Commun., vol. 4, no. 5, pp. 215–221, May 2003.
O. H. Laguna, W. Y. Hernández, G. Arzamendi, L. M. Gandía, M. A. Centeno, and J. A. Odriozola, “Gold supported on CuOx/CeO2 catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX),” Fuel, vol. 118, pp. 176–185, Feb. 2014.
S. Guerrero, J. T. Miller, A. J. Kropf, and E. E. Wolf, “In situ EXAFS and FTIR studies of the promotion behavior of Pt–Nb2O5/Al2O3 catalysts during the preferential oxidation of CO,” J. Catal., vol. 262, no. 1, pp. 102–110, 2009.
a. Martínez-Arias, a. B. Hungría, G. Munuera, and D. Gamarra, “Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream,” Appl. Catal. B Environ., vol. 65, no. 3–4, pp. 207–216, Jun. 2006
J. da S. L. Fonseca et al., “Cooperative effect between copper and gold on ceria for CO-PROX reaction,” Catal. Today, vol. 180, no. 1, pp. 34–41, Jan. 2012.
N. Sanchez, R. Y. Ruiz, B. Cifuentes, and M. Cobo, “Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming,” Int. J. Hydrogen Energy, vol. 41, no. 13, pp. 5640–5651, 2016.
M. Cobo, D. Pieruccini, R. Abello, L. Ariza, L. F. Córdoba, and J. a. Conesa, “Steam reforming of ethanol over bimetallic RhPt/La2O3: Long-term stability under favorable reaction conditions,” Int. J. Hydrogen Energy, vol. 38, no. 14, pp. 5580–5593, 2013.
N. J. Divins, E. López, Á. Rodríguez, D. Vega, and J. Llorca, “Bio-ethanol steam reforming and autothermal reforming in 3-μm channels coated with RhPd/CeO2 for hydrogen generation,” Chem. Eng. Process. Process Intensif., vol. 64, pp. 31–37, Feb. 2013.
R. Ma, B. Castro-Dominguez, I. P. Mardilovich, A. G. Dixon, and Y. H. Ma, “Experimental and simulation studies of the production of renewable hydrogen through ethanol steam reforming in a large-scale catalytic membrane reactor,” Chem. Eng. J., vol. 303, pp. 302–313, 2016.
Muhammad Bilala, S. D. Jackson, M. Bilal, and S. D. Jackson, “Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation,” Catal. Sci. Technol, vol. 3, no. 3, pp. 754–766, Feb. 2013.
I. Llera, V. Mas, M. L. Bergamini, M. Laborde, and N. Amadeo, “Bio-ethanol steam reforming on Ni based catalyst. Kinetic study,” Chem. Eng. Sci., vol. 71, pp. 356–366, Mar. 2012.
S. Scirè, C. Crisafulli, P. M. Riccobene, G. Patanè, and A. Pistone, “Selective oxidation of CO in H2-rich stream over Au/CeO2 and Cu/CeO2 catalysts: An insight on the effect of preparation method and catalyst pretreatment,” Appl. Catal. A Gen., vol. 417–418, pp. 66–75, Feb. 2012.
G. Yi, H. Yang, B. Li, H. Lin, K. Tanaka, and Y. Yuan, “Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts: Nanoscale CeO2 shape effect and mechanism aspect,” Catal. Today, vol. 157, no. 1–4, pp. 83–88, Nov. 2010.
Q. Zhang, L. Shore, and R. J. Farrauto, “Selective CO oxidation over a commercial PROX monolith catalyst for hydrogen fuel cell applications,” Int. J. Hydrogen Energy, vol. 37, no. 14, pp. 10874–10880, 2012.
J. A. Torres, J. Llorca, A. Casanovas, M. Domínguez, J. Salvadó, and D. Montané, “Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts,” J. Power Sources, vol. 169, no. 1, pp. 158–166, Jun. 2007.
Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011.
Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011.
M. A. Murmura, M. Patrascu, M. C. Annesini, V. Palma, C. Ruocco, and M. Sheintuch, “Directing selectivity of ethanol steam reforming in membrane reactors,” Int. J. Hydrogen Energy, vol. 40, no. 17, pp. 5837–5848, 2015.
S. Tosti et al., “Low-temperature ethanol steam reforming in a Pd–Ag membrane reactor: Part 2. Pt-based and Ni-based catalysts and general comparison,” J. Memb. Sci., vol. 308, no. 1, pp. 258–263, 2008.
D. D. Papadias, S. H. D. Lee, M. Ferrandon, and S. Ahmed, “An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor,” Int. J. Hydrogen Energy, vol. 35, no. 5, pp. 2004–2017, 2010
J. L. Contreras et al., “Catalysts for H2 production using the ethanol steam reforming (a review),” Int. J. Hydrogen Energy, vol. 39, no. 33, pp. 18835–18853, Nov. 2014.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10818/29505
dc.identifier.local.none.fl_str_mv 263183
TE08845
identifier_str_mv J. E. Kang and W. W. Recker, “Measuring the inconvenience of operating an alternative fuel vehicle,” Transp. Res. Part D Transp. Environ., vol. 27, pp. 30–40, Mar. 2014.
A. Hoen and M. J. Koetse, “A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands,” Transp. Res. Part A Policy Pract., vol. 61, pp. 199–215, Mar. 2014.
B. Bej, N. C. Pradhan, and S. Neogi, “Production of hydrogen by steam reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst,” Catal. Today, vol. 237, pp. 80–88, 2014.
J. A. Calles, A. Carrero, and A. J. Vizcaíno, “Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming,” Microporous Mesoporous Mater., vol. 119, no. 1, pp. 200–207, 2009
D. Pieruccini, M. Cobo, and L. Córdoba, “Producción de hidrógeno por reformado de etanol usando el catalizador bimetálico Rh-Pt/La2O3.,” Maest. en Diseño y Gestión Procesos. Fac. Ing. Univ. La Sabana, vol. 1, 2013.
I. Uriz, G. Arzamendi, E. López, J. Llorca, and L. M. Gandía, “Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels,” Chem. Eng. J., vol. 167, no. 2–3, pp. 603–609, Mar. 2011.
L. Ilieva et al., “Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of preparation method and nature of dopant,” Catal. Today, vol. 158, no. 1–2, pp. 44–55, Dec. 2010.
M. Manzoli, A. Chiorino, and F. Boccuzzi, “Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2,” Appl. Catal. B Environ., vol. 57, no. 3, pp. 201–209, May 2005.
X. Liao, W. Chu, X. Dai, and V. Pitchon, “Bimetallic Au–Cu supported on ceria for PROX reaction: Effects of Cu/Au atomic ratios and thermal pretreatments,” Appl. Catal. B Environ., vol. 142–143, pp. 25–37, Oct. 2013.
A. Luengnaruemitchai, S. Osuwan, and E. Gulari, “Comparative studies of low-temperature water–gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts,” Catal. Commun., vol. 4, no. 5, pp. 215–221, May 2003.
O. H. Laguna, W. Y. Hernández, G. Arzamendi, L. M. Gandía, M. A. Centeno, and J. A. Odriozola, “Gold supported on CuOx/CeO2 catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX),” Fuel, vol. 118, pp. 176–185, Feb. 2014.
S. Guerrero, J. T. Miller, A. J. Kropf, and E. E. Wolf, “In situ EXAFS and FTIR studies of the promotion behavior of Pt–Nb2O5/Al2O3 catalysts during the preferential oxidation of CO,” J. Catal., vol. 262, no. 1, pp. 102–110, 2009.
a. Martínez-Arias, a. B. Hungría, G. Munuera, and D. Gamarra, “Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream,” Appl. Catal. B Environ., vol. 65, no. 3–4, pp. 207–216, Jun. 2006
J. da S. L. Fonseca et al., “Cooperative effect between copper and gold on ceria for CO-PROX reaction,” Catal. Today, vol. 180, no. 1, pp. 34–41, Jan. 2012.
N. Sanchez, R. Y. Ruiz, B. Cifuentes, and M. Cobo, “Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming,” Int. J. Hydrogen Energy, vol. 41, no. 13, pp. 5640–5651, 2016.
M. Cobo, D. Pieruccini, R. Abello, L. Ariza, L. F. Córdoba, and J. a. Conesa, “Steam reforming of ethanol over bimetallic RhPt/La2O3: Long-term stability under favorable reaction conditions,” Int. J. Hydrogen Energy, vol. 38, no. 14, pp. 5580–5593, 2013.
N. J. Divins, E. López, Á. Rodríguez, D. Vega, and J. Llorca, “Bio-ethanol steam reforming and autothermal reforming in 3-μm channels coated with RhPd/CeO2 for hydrogen generation,” Chem. Eng. Process. Process Intensif., vol. 64, pp. 31–37, Feb. 2013.
R. Ma, B. Castro-Dominguez, I. P. Mardilovich, A. G. Dixon, and Y. H. Ma, “Experimental and simulation studies of the production of renewable hydrogen through ethanol steam reforming in a large-scale catalytic membrane reactor,” Chem. Eng. J., vol. 303, pp. 302–313, 2016.
Muhammad Bilala, S. D. Jackson, M. Bilal, and S. D. Jackson, “Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation,” Catal. Sci. Technol, vol. 3, no. 3, pp. 754–766, Feb. 2013.
I. Llera, V. Mas, M. L. Bergamini, M. Laborde, and N. Amadeo, “Bio-ethanol steam reforming on Ni based catalyst. Kinetic study,” Chem. Eng. Sci., vol. 71, pp. 356–366, Mar. 2012.
S. Scirè, C. Crisafulli, P. M. Riccobene, G. Patanè, and A. Pistone, “Selective oxidation of CO in H2-rich stream over Au/CeO2 and Cu/CeO2 catalysts: An insight on the effect of preparation method and catalyst pretreatment,” Appl. Catal. A Gen., vol. 417–418, pp. 66–75, Feb. 2012.
G. Yi, H. Yang, B. Li, H. Lin, K. Tanaka, and Y. Yuan, “Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts: Nanoscale CeO2 shape effect and mechanism aspect,” Catal. Today, vol. 157, no. 1–4, pp. 83–88, Nov. 2010.
Q. Zhang, L. Shore, and R. J. Farrauto, “Selective CO oxidation over a commercial PROX monolith catalyst for hydrogen fuel cell applications,” Int. J. Hydrogen Energy, vol. 37, no. 14, pp. 10874–10880, 2012.
J. A. Torres, J. Llorca, A. Casanovas, M. Domínguez, J. Salvadó, and D. Montané, “Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts,” J. Power Sources, vol. 169, no. 1, pp. 158–166, Jun. 2007.
Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011.
M. A. Murmura, M. Patrascu, M. C. Annesini, V. Palma, C. Ruocco, and M. Sheintuch, “Directing selectivity of ethanol steam reforming in membrane reactors,” Int. J. Hydrogen Energy, vol. 40, no. 17, pp. 5837–5848, 2015.
S. Tosti et al., “Low-temperature ethanol steam reforming in a Pd–Ag membrane reactor: Part 2. Pt-based and Ni-based catalysts and general comparison,” J. Memb. Sci., vol. 308, no. 1, pp. 258–263, 2008.
D. D. Papadias, S. H. D. Lee, M. Ferrandon, and S. Ahmed, “An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor,” Int. J. Hydrogen Energy, vol. 35, no. 5, pp. 2004–2017, 2010
J. L. Contreras et al., “Catalysts for H2 production using the ethanol steam reforming (a review),” Int. J. Hydrogen Energy, vol. 39, no. 33, pp. 18835–18853, Nov. 2014.
263183
TE08845
url http://hdl.handle.net/10818/29505
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.es_CO.fl_str_mv Universidad de La Sabana
dc.publisher.program.none.fl_str_mv Ingeniería Química
dc.publisher.department.none.fl_str_mv Facultad de Ingeniería
dc.source.none.fl_str_mv Universidad de La Sabana
Intellectum Repositorio Universidad de la Sabana
institution Universidad de la Sabana
bitstream.url.fl_str_mv https://intellectum.unisabana.edu.co/bitstream/10818/29505/1/Juan%20David%20Camargo%20P%c3%a1ez%20%28Tesis.pdf
https://intellectum.unisabana.edu.co/bitstream/10818/29505/2/license_rdf
https://intellectum.unisabana.edu.co/bitstream/10818/29505/3/license.txt
https://intellectum.unisabana.edu.co/bitstream/10818/29505/4/Juan%20David%20Camargo%20P%c3%a1ez%20%28Carta%29.pdf
https://intellectum.unisabana.edu.co/bitstream/10818/29505/5/Juan%20David%20Camargo%20P%c3%a1ez%20%28Tesis.pdf.txt
bitstream.checksum.fl_str_mv b02899a5c36a6350896e2ed19217d9b0
7c9ab7f006165862d8ce9ac5eac01552
f52a2cfd4df262e08e9b300d62c85cab
9f47d4b72efaa2f74fee98f526d1b2bb
d3936050896bb989370ed41d2c0feafe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Intellectum Universidad de la Sabana
repository.mail.fl_str_mv contactointellectum@unisabana.edu.co
_version_ 1811952253342318592
spelling Cobo Ángel, Martha IsabelCamargo Páez, Juan DavidManrique Cuevas, Adriana MilenaIngeniero Químico2017-01-27T17:22:29Z2017-01-27T17:22:29Z20172017-01-27J. E. Kang and W. W. Recker, “Measuring the inconvenience of operating an alternative fuel vehicle,” Transp. Res. Part D Transp. Environ., vol. 27, pp. 30–40, Mar. 2014.A. Hoen and M. J. Koetse, “A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands,” Transp. Res. Part A Policy Pract., vol. 61, pp. 199–215, Mar. 2014.B. Bej, N. C. Pradhan, and S. Neogi, “Production of hydrogen by steam reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst,” Catal. Today, vol. 237, pp. 80–88, 2014.J. A. Calles, A. Carrero, and A. J. Vizcaíno, “Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming,” Microporous Mesoporous Mater., vol. 119, no. 1, pp. 200–207, 2009D. Pieruccini, M. Cobo, and L. Córdoba, “Producción de hidrógeno por reformado de etanol usando el catalizador bimetálico Rh-Pt/La2O3.,” Maest. en Diseño y Gestión Procesos. Fac. Ing. Univ. La Sabana, vol. 1, 2013.I. Uriz, G. Arzamendi, E. López, J. Llorca, and L. M. Gandía, “Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels,” Chem. Eng. J., vol. 167, no. 2–3, pp. 603–609, Mar. 2011.L. Ilieva et al., “Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of preparation method and nature of dopant,” Catal. Today, vol. 158, no. 1–2, pp. 44–55, Dec. 2010.M. Manzoli, A. Chiorino, and F. Boccuzzi, “Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2,” Appl. Catal. B Environ., vol. 57, no. 3, pp. 201–209, May 2005.X. Liao, W. Chu, X. Dai, and V. Pitchon, “Bimetallic Au–Cu supported on ceria for PROX reaction: Effects of Cu/Au atomic ratios and thermal pretreatments,” Appl. Catal. B Environ., vol. 142–143, pp. 25–37, Oct. 2013.A. Luengnaruemitchai, S. Osuwan, and E. Gulari, “Comparative studies of low-temperature water–gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts,” Catal. Commun., vol. 4, no. 5, pp. 215–221, May 2003.O. H. Laguna, W. Y. Hernández, G. Arzamendi, L. M. Gandía, M. A. Centeno, and J. A. Odriozola, “Gold supported on CuOx/CeO2 catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX),” Fuel, vol. 118, pp. 176–185, Feb. 2014.S. Guerrero, J. T. Miller, A. J. Kropf, and E. E. Wolf, “In situ EXAFS and FTIR studies of the promotion behavior of Pt–Nb2O5/Al2O3 catalysts during the preferential oxidation of CO,” J. Catal., vol. 262, no. 1, pp. 102–110, 2009.a. Martínez-Arias, a. B. Hungría, G. Munuera, and D. Gamarra, “Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream,” Appl. Catal. B Environ., vol. 65, no. 3–4, pp. 207–216, Jun. 2006J. da S. L. Fonseca et al., “Cooperative effect between copper and gold on ceria for CO-PROX reaction,” Catal. Today, vol. 180, no. 1, pp. 34–41, Jan. 2012.N. Sanchez, R. Y. Ruiz, B. Cifuentes, and M. Cobo, “Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming,” Int. J. Hydrogen Energy, vol. 41, no. 13, pp. 5640–5651, 2016.M. Cobo, D. Pieruccini, R. Abello, L. Ariza, L. F. Córdoba, and J. a. Conesa, “Steam reforming of ethanol over bimetallic RhPt/La2O3: Long-term stability under favorable reaction conditions,” Int. J. Hydrogen Energy, vol. 38, no. 14, pp. 5580–5593, 2013.N. J. Divins, E. López, Á. Rodríguez, D. Vega, and J. Llorca, “Bio-ethanol steam reforming and autothermal reforming in 3-μm channels coated with RhPd/CeO2 for hydrogen generation,” Chem. Eng. Process. Process Intensif., vol. 64, pp. 31–37, Feb. 2013.R. Ma, B. Castro-Dominguez, I. P. Mardilovich, A. G. Dixon, and Y. H. Ma, “Experimental and simulation studies of the production of renewable hydrogen through ethanol steam reforming in a large-scale catalytic membrane reactor,” Chem. Eng. J., vol. 303, pp. 302–313, 2016.Muhammad Bilala, S. D. Jackson, M. Bilal, and S. D. Jackson, “Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation,” Catal. Sci. Technol, vol. 3, no. 3, pp. 754–766, Feb. 2013.I. Llera, V. Mas, M. L. Bergamini, M. Laborde, and N. Amadeo, “Bio-ethanol steam reforming on Ni based catalyst. Kinetic study,” Chem. Eng. Sci., vol. 71, pp. 356–366, Mar. 2012.S. Scirè, C. Crisafulli, P. M. Riccobene, G. Patanè, and A. Pistone, “Selective oxidation of CO in H2-rich stream over Au/CeO2 and Cu/CeO2 catalysts: An insight on the effect of preparation method and catalyst pretreatment,” Appl. Catal. A Gen., vol. 417–418, pp. 66–75, Feb. 2012.G. Yi, H. Yang, B. Li, H. Lin, K. Tanaka, and Y. Yuan, “Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts: Nanoscale CeO2 shape effect and mechanism aspect,” Catal. Today, vol. 157, no. 1–4, pp. 83–88, Nov. 2010.Q. Zhang, L. Shore, and R. J. Farrauto, “Selective CO oxidation over a commercial PROX monolith catalyst for hydrogen fuel cell applications,” Int. J. Hydrogen Energy, vol. 37, no. 14, pp. 10874–10880, 2012.J. A. Torres, J. Llorca, A. Casanovas, M. Domínguez, J. Salvadó, and D. Montané, “Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts,” J. Power Sources, vol. 169, no. 1, pp. 158–166, Jun. 2007.Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011.Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011.M. A. Murmura, M. Patrascu, M. C. Annesini, V. Palma, C. Ruocco, and M. Sheintuch, “Directing selectivity of ethanol steam reforming in membrane reactors,” Int. J. Hydrogen Energy, vol. 40, no. 17, pp. 5837–5848, 2015.S. Tosti et al., “Low-temperature ethanol steam reforming in a Pd–Ag membrane reactor: Part 2. Pt-based and Ni-based catalysts and general comparison,” J. Memb. Sci., vol. 308, no. 1, pp. 258–263, 2008.D. D. Papadias, S. H. D. Lee, M. Ferrandon, and S. Ahmed, “An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor,” Int. J. Hydrogen Energy, vol. 35, no. 5, pp. 2004–2017, 2010J. L. Contreras et al., “Catalysts for H2 production using the ethanol steam reforming (a review),” Int. J. Hydrogen Energy, vol. 39, no. 33, pp. 18835–18853, Nov. 2014.http://hdl.handle.net/10818/29505263183TE0884549 Páginas.En el presente estudio se llevó a cabo la evaluación de actividad de los catalizadores Au(2,0wt%)/CeO2, Cu(2,0wt%)/CeO2 y Au(1,0wt%)Cu(1,0wt%)/CeO2 en la reacción de oxidación preferencial de monóxido de carbono (CO-PROX), como paso determinante en la purificación de H2 proveniente del reformado con vapor de etanol (RVE), para ser usado en la producción de energía eléctrica en celdas de combustible (FC). Para la evaluación de actividad en la CO-PROX, los catalizadores se sometieron tanto a ambientes simulados de reacción como a corrientes provenientes directamente del RVE. Rh(0,6wt%)Pt(0,2wt%)/La2O3 fue el catalizador implementado en el RVE para producir H2. El catalizador bimetálico de Cu/CeO2 fue el que presentó la mayor actividad en comparación con los catalizadores compuestos de Au (Au/CeO2 y AuCu/CeO2), alcanzando conversión de 100%, una selectividad a CO2 del 50% y un consumo máximo permitido de H2 del 30% a 150 °C, ésta como condición óptima de operación, además de una reducción en la concentración de CO hasta alcanzar un valor de 1,79 ppm a la salida de la unidad CO-PROX. Sin embargo, todos los catalizadores presentaron decaimiento en la actividad a altas temperaturas (>200 °C), efecto que se asoció con la competencia de sitios activos entre H2 y CO por su oxidación preferencial. Por su parte, AuCu/CeO2 resultó ser el catalizador en oxidar la mayor cantidad de H2, efecto indeseado que debe ser reducido dentro del sistema en futuras investigaciones. Los resultados de este estudio fueron considerados como preliminares y un primer paso determinante en el desarrollo de sistemas en continuo para la generación de electricidad en FC alimentadas por H2 obtenido de bioetanol.spaUniversidad de La SabanaIngeniería QuímicaFacultad de IngenieríaUniversidad de La SabanaIntellectum Repositorio Universidad de la SabanaIngeniería químicaIngeniería química -- Equipo y accesoriosCatalizadores de hidrotratamientoIntegración de las reacciones de reformado con vapor de etanol y co-prox para la producción de H2bachelorThesisTesis de pregradopublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/access_right/c_abf2ORIGINALJuan David Camargo Páez (Tesis.pdfJuan David Camargo Páez (Tesis.pdfVer documento en PDFapplication/pdf2741085https://intellectum.unisabana.edu.co/bitstream/10818/29505/1/Juan%20David%20Camargo%20P%c3%a1ez%20%28Tesis.pdfb02899a5c36a6350896e2ed19217d9b0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81223https://intellectum.unisabana.edu.co/bitstream/10818/29505/2/license_rdf7c9ab7f006165862d8ce9ac5eac01552MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/29505/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD53Juan David Camargo Páez (Carta).pdfJuan David Camargo Páez (Carta).pdfapplication/pdf740553https://intellectum.unisabana.edu.co/bitstream/10818/29505/4/Juan%20David%20Camargo%20P%c3%a1ez%20%28Carta%29.pdf9f47d4b72efaa2f74fee98f526d1b2bbMD54TEXTJuan David Camargo Páez (Tesis.pdf.txtJuan David Camargo Páez (Tesis.pdf.txtExtracted Texttext/plain93688https://intellectum.unisabana.edu.co/bitstream/10818/29505/5/Juan%20David%20Camargo%20P%c3%a1ez%20%28Tesis.pdf.txtd3936050896bb989370ed41d2c0feafeMD5510818/29505oai:intellectum.unisabana.edu.co:10818/295052017-07-26 08:55:01.575Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K