Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia

92 páginas

Autores:
Conde Martínez, Natalia E.
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de la Sabana
Repositorio:
Repositorio Universidad de la Sabana
Idioma:
spa
OAI Identifier:
oai:intellectum.unisabana.edu.co:10818/37414
Acceso en línea:
http://hdl.handle.net/10818/37414
Palabra clave:
Vibrio diabolicus
Estructura molecular
Salinas -- (Manaure, Guajira, Colombia)
Polihidroxibutirato
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id REPOUSABA2_7b9789e1d6dda79a47651b291f325c13
oai_identifier_str oai:intellectum.unisabana.edu.co:10818/37414
network_acronym_str REPOUSABA2
network_name_str Repositorio Universidad de la Sabana
repository_id_str
dc.title.en.fl_str_mv Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
title Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
spellingShingle Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
Vibrio diabolicus
Estructura molecular
Salinas -- (Manaure, Guajira, Colombia)
Polihidroxibutirato
title_short Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
title_full Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
title_fullStr Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
title_full_unstemmed Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
title_sort Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
dc.creator.fl_str_mv Conde Martínez, Natalia E.
dc.contributor.advisor.none.fl_str_mv Tello Camacho, Edisson
Acosta González, Alejandro
dc.contributor.author.none.fl_str_mv Conde Martínez, Natalia E.
dc.subject.es_CO.fl_str_mv Vibrio diabolicus
Estructura molecular
Salinas -- (Manaure, Guajira, Colombia)
Polihidroxibutirato
topic Vibrio diabolicus
Estructura molecular
Salinas -- (Manaure, Guajira, Colombia)
Polihidroxibutirato
description 92 páginas
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-08-08
dc.date.accessioned.none.fl_str_mv 9/24/2019 15:14
dc.date.available.none.fl_str_mv 9/24/2019 15:14
dc.type.es_CO.fl_str_mv doctoralThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.local.none.fl_str_mv Tesis de doctorado
dc.type.hasVersion.es_CO.fl_str_mv publishedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10818/37414
dc.identifier.local.none.fl_str_mv 273930
TE10310
url http://hdl.handle.net/10818/37414
identifier_str_mv 273930
TE10310
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de La Sabana
dc.source.es_CO.fl_str_mv instname:Universidad de La Sabana
reponame:Intellectum Repositorio Universidad de La Sabana
instname_str Universidad de La Sabana
institution Universidad de la Sabana
reponame_str Intellectum Repositorio Universidad de La Sabana
collection Intellectum Repositorio Universidad de La Sabana
bitstream.url.fl_str_mv https://intellectum.unisabana.edu.co/bitstream/10818/37414/1/final.pdf
https://intellectum.unisabana.edu.co/bitstream/10818/37414/2/license_rdf
https://intellectum.unisabana.edu.co/bitstream/10818/37414/3/license.txt
https://intellectum.unisabana.edu.co/bitstream/10818/37414/4/carta.pdf
https://intellectum.unisabana.edu.co/bitstream/10818/37414/5/final.pdf.txt
bitstream.checksum.fl_str_mv b679235917458cc3db636f3630cd5efe
4460e5956bc1d1639be9ae6146a50347
f52a2cfd4df262e08e9b300d62c85cab
e8d165e8a67cf0c7d056b58a21340878
7c294ab13f4c008be08d4466670b96db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Intellectum Universidad de la Sabana
repository.mail.fl_str_mv contactointellectum@unisabana.edu.co
_version_ 1811952200661860352
spelling Tello Camacho, EdissonAcosta González, AlejandroConde Martínez, Natalia E.9/24/2019 15:149/24/2019 15:142019-08-08http://hdl.handle.net/10818/37414273930TE1031092 páginasThe objective of this research was to establish the bioprospecting potential of the cultivable bacteria isolated from the Manaure Solar Saltern in La Guajira, Colombia. To achieve this, a strategy of mixed cultures was implemented to evaluate the cytotoxic and antibacterial activity of their crude extracts. The best bioactive mixed culture was selected, and their isolates were obtained and characterized. The results from the biological assays with the crude extracts of the isolates grown individually led to establish that the halophilic bacterium Vibrio diabolicus A1SM3 was responsible for the biological activity of the mixed culture. From the bioguided fractionation of this extract and its analysis by HPLC-MS/MS and NMR, the isotrisindoline was identified as the compound responsible for the cytotoxic and antibacterial activity. After that, variations on the carbon and nitrogen source, and the salinity of the medium were made to determine how they affected the isotrisindoline production. The MS/MS data obtained from the crude extracts of these cultures were analyzed through molecular networking in order to establish the effect of these variations. In addition to this, it was possible to identify that this microorganism produces polyhydroxybutyrates, a biopolymer widely produced and accumulated by Vibrio species with great applications in the plastics industry. Finally, by sequencing the genome of Vibrio diabolicus A1SM3, the biosynthetic gene cluster associated with the production of this biopolymer was annotated.application/pdfspaUniversidad de La SabanaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2instname:Universidad de La Sabanareponame:Intellectum Repositorio Universidad de La SabanaVibrio diabolicusEstructura molecularSalinas -- (Manaure, Guajira, Colombia)PolihidroxibutiratoBioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, ColombiadoctoralThesisTesis de doctoradopublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_db06Bell, R., Carmeli, S., & Sar, N. (1994). Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. Journal of Natural Products, 57(11), 1587–1590.Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695.DasSarma, S., & DasSarma, P. (2012). Halophiles. ELS. John Wiley & Sons, Ltd: Chichester, 1–11.Ganapathy, K., Ramasamy, R., & Dhinakarasamy, I. (2018). Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 111, 102–108.Kobayashi, M. M., Aoki, S., Gato, K., Matsunami, K., Kurosu, M., & Kitagawa, I. (1994). Marine natural products. XXXIV. 1) Trisindole, a new antibiotic indole trimer, produced by a Bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull., 42(12), 2449–2451.Mansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. Marine Drugs, 9, 1440–1468.Müller, V., & Köcher, S. (2011). Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In K. Horikoshi (Ed.), Extremophiles Handbook (pp. 384–400). Springer.Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.Newman, D. J., & Giddings, L.-A. (2014). Natural products as leads to antitumor drugs. Phytochemistry Reviews, 13(1), 123–137.Pettit, R. K. (2009). Mixed fermentation for natural product drug discovery. Applied Microbiology and Biotechnology, 83(1), 19–25.Richter, M., & Rosselló-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126–19131.Schöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., … Bode, H. B. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem, 17(3), 247–253.Thompson, F., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431.Trigui, H., Masmoudi, S., Brochier-Armanet, C., Maalej, S., & Dukan, S. (2011). Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Canadian Journal of Microbiology, 57, 923–933.Veluri, R., Oka, I., Wagner-dobler, I., & Laatsch, H. (2003). New indole alkaloids from the north sea bacterium Vibrio parahaemolyticus. Journal of Natural Products, 66, 1520–1523.Wang, M., Carver, J. J., Phelan, V. V, Sanchez, L. M., Garg, N., Peng, Y., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.Bell, R., Carmeli, S., & Sar, N. (1994). Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. Journal of Natural Products, 57(11), 1587–1590.Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695.DasSarma, S., & DasSarma, P. (2012). Halophiles. ELS. John Wiley & Sons, Ltd: Chichester, 1–11.Ganapathy, K., Ramasamy, R., & Dhinakarasamy, I. (2018). Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 111, 102–108.Kobayashi, M. M., Aoki, S., Gato, K., Matsunami, K., Kurosu, M., & Kitagawa, I. (1994). Marine natural products. XXXIV. 1) Trisindole, a new antibiotic indole trimer, produced by a Bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull., 42(12), 2449–2451.Mansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. Marine Drugs, 9, 1440–1468.Müller, V., & Köcher, S. (2011). Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In K. Horikoshi (Ed.), Extremophiles Handbook (pp. 384–400). Springer.Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.Newman, D. J., & Giddings, L.-A. (2014). Natural products as leads to antitumor drugs. Phytochemistry Reviews, 13(1), 123–137.Pettit, R. K. (2009). Mixed fermentation for natural product drug discovery. Applied Microbiology and Biotechnology, 83(1), 19–25.Richter, M., & Rosselló-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126–19131.Schöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., … Bode, H. B. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem, 17(3), 247–253.Thompson, F., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431.Trigui, H., Masmoudi, S., Brochier-Armanet, C., Maalej, S., & Dukan, S. (2011). Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Canadian Journal of Microbiology, 57, 923–933.Veluri, R., Oka, I., Wagner-dobler, I., & Laatsch, H. (2003). New indole alkaloids from the north sea bacterium Vibrio parahaemolyticus. Journal of Natural Products, 66, 1520–1523.Wang, M., Carver, J. J., Phelan, V. V, Sanchez, L. M., Garg, N., Peng, Y., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.Facultad de IngenieríaUniversidad de La SabanaDoctorado en BiocienciasDoctor en BiocienciasORIGINALfinal.pdffinal.pdfVer documento en PDFapplication/pdf3598883https://intellectum.unisabana.edu.co/bitstream/10818/37414/1/final.pdfb679235917458cc3db636f3630cd5efeMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://intellectum.unisabana.edu.co/bitstream/10818/37414/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/37414/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD53carta.pdfcarta.pdfCartaapplication/pdf979403https://intellectum.unisabana.edu.co/bitstream/10818/37414/4/carta.pdfe8d165e8a67cf0c7d056b58a21340878MD54TEXTfinal.pdf.txtfinal.pdf.txtExtracted texttext/plain237699https://intellectum.unisabana.edu.co/bitstream/10818/37414/5/final.pdf.txt7c294ab13f4c008be08d4466670b96dbMD5510818/37414oai:intellectum.unisabana.edu.co:10818/374142022-02-18 12:08:41.589Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K