Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia
92 páginas
- Autores:
-
Conde Martínez, Natalia E.
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de la Sabana
- Repositorio:
- Repositorio Universidad de la Sabana
- Idioma:
- spa
- OAI Identifier:
- oai:intellectum.unisabana.edu.co:10818/37414
- Acceso en línea:
- http://hdl.handle.net/10818/37414
- Palabra clave:
- Vibrio diabolicus
Estructura molecular
Salinas -- (Manaure, Guajira, Colombia)
Polihidroxibutirato
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
REPOUSABA2_7b9789e1d6dda79a47651b291f325c13 |
---|---|
oai_identifier_str |
oai:intellectum.unisabana.edu.co:10818/37414 |
network_acronym_str |
REPOUSABA2 |
network_name_str |
Repositorio Universidad de la Sabana |
repository_id_str |
|
dc.title.en.fl_str_mv |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia |
title |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia |
spellingShingle |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia Vibrio diabolicus Estructura molecular Salinas -- (Manaure, Guajira, Colombia) Polihidroxibutirato |
title_short |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia |
title_full |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia |
title_fullStr |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia |
title_full_unstemmed |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia |
title_sort |
Bioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombia |
dc.creator.fl_str_mv |
Conde Martínez, Natalia E. |
dc.contributor.advisor.none.fl_str_mv |
Tello Camacho, Edisson Acosta González, Alejandro |
dc.contributor.author.none.fl_str_mv |
Conde Martínez, Natalia E. |
dc.subject.es_CO.fl_str_mv |
Vibrio diabolicus Estructura molecular Salinas -- (Manaure, Guajira, Colombia) Polihidroxibutirato |
topic |
Vibrio diabolicus Estructura molecular Salinas -- (Manaure, Guajira, Colombia) Polihidroxibutirato |
description |
92 páginas |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-08-08 |
dc.date.accessioned.none.fl_str_mv |
9/24/2019 15:14 |
dc.date.available.none.fl_str_mv |
9/24/2019 15:14 |
dc.type.es_CO.fl_str_mv |
doctoralThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.local.none.fl_str_mv |
Tesis de doctorado |
dc.type.hasVersion.es_CO.fl_str_mv |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10818/37414 |
dc.identifier.local.none.fl_str_mv |
273930 TE10310 |
url |
http://hdl.handle.net/10818/37414 |
identifier_str_mv |
273930 TE10310 |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de La Sabana |
dc.source.es_CO.fl_str_mv |
instname:Universidad de La Sabana reponame:Intellectum Repositorio Universidad de La Sabana |
instname_str |
Universidad de La Sabana |
institution |
Universidad de la Sabana |
reponame_str |
Intellectum Repositorio Universidad de La Sabana |
collection |
Intellectum Repositorio Universidad de La Sabana |
bitstream.url.fl_str_mv |
https://intellectum.unisabana.edu.co/bitstream/10818/37414/1/final.pdf https://intellectum.unisabana.edu.co/bitstream/10818/37414/2/license_rdf https://intellectum.unisabana.edu.co/bitstream/10818/37414/3/license.txt https://intellectum.unisabana.edu.co/bitstream/10818/37414/4/carta.pdf https://intellectum.unisabana.edu.co/bitstream/10818/37414/5/final.pdf.txt |
bitstream.checksum.fl_str_mv |
b679235917458cc3db636f3630cd5efe 4460e5956bc1d1639be9ae6146a50347 f52a2cfd4df262e08e9b300d62c85cab e8d165e8a67cf0c7d056b58a21340878 7c294ab13f4c008be08d4466670b96db |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Intellectum Universidad de la Sabana |
repository.mail.fl_str_mv |
contactointellectum@unisabana.edu.co |
_version_ |
1811952200661860352 |
spelling |
Tello Camacho, EdissonAcosta González, AlejandroConde Martínez, Natalia E.9/24/2019 15:149/24/2019 15:142019-08-08http://hdl.handle.net/10818/37414273930TE1031092 páginasThe objective of this research was to establish the bioprospecting potential of the cultivable bacteria isolated from the Manaure Solar Saltern in La Guajira, Colombia. To achieve this, a strategy of mixed cultures was implemented to evaluate the cytotoxic and antibacterial activity of their crude extracts. The best bioactive mixed culture was selected, and their isolates were obtained and characterized. The results from the biological assays with the crude extracts of the isolates grown individually led to establish that the halophilic bacterium Vibrio diabolicus A1SM3 was responsible for the biological activity of the mixed culture. From the bioguided fractionation of this extract and its analysis by HPLC-MS/MS and NMR, the isotrisindoline was identified as the compound responsible for the cytotoxic and antibacterial activity. After that, variations on the carbon and nitrogen source, and the salinity of the medium were made to determine how they affected the isotrisindoline production. The MS/MS data obtained from the crude extracts of these cultures were analyzed through molecular networking in order to establish the effect of these variations. In addition to this, it was possible to identify that this microorganism produces polyhydroxybutyrates, a biopolymer widely produced and accumulated by Vibrio species with great applications in the plastics industry. Finally, by sequencing the genome of Vibrio diabolicus A1SM3, the biosynthetic gene cluster associated with the production of this biopolymer was annotated.application/pdfspaUniversidad de La SabanaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2instname:Universidad de La Sabanareponame:Intellectum Repositorio Universidad de La SabanaVibrio diabolicusEstructura molecularSalinas -- (Manaure, Guajira, Colombia)PolihidroxibutiratoBioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, ColombiadoctoralThesisTesis de doctoradopublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_db06Bell, R., Carmeli, S., & Sar, N. (1994). Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. Journal of Natural Products, 57(11), 1587–1590.Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695.DasSarma, S., & DasSarma, P. (2012). Halophiles. ELS. John Wiley & Sons, Ltd: Chichester, 1–11.Ganapathy, K., Ramasamy, R., & Dhinakarasamy, I. (2018). Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 111, 102–108.Kobayashi, M. M., Aoki, S., Gato, K., Matsunami, K., Kurosu, M., & Kitagawa, I. (1994). Marine natural products. XXXIV. 1) Trisindole, a new antibiotic indole trimer, produced by a Bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull., 42(12), 2449–2451.Mansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. Marine Drugs, 9, 1440–1468.Müller, V., & Köcher, S. (2011). Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In K. Horikoshi (Ed.), Extremophiles Handbook (pp. 384–400). Springer.Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.Newman, D. J., & Giddings, L.-A. (2014). Natural products as leads to antitumor drugs. Phytochemistry Reviews, 13(1), 123–137.Pettit, R. K. (2009). Mixed fermentation for natural product drug discovery. Applied Microbiology and Biotechnology, 83(1), 19–25.Richter, M., & Rosselló-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126–19131.Schöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., … Bode, H. B. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem, 17(3), 247–253.Thompson, F., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431.Trigui, H., Masmoudi, S., Brochier-Armanet, C., Maalej, S., & Dukan, S. (2011). Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Canadian Journal of Microbiology, 57, 923–933.Veluri, R., Oka, I., Wagner-dobler, I., & Laatsch, H. (2003). New indole alkaloids from the north sea bacterium Vibrio parahaemolyticus. Journal of Natural Products, 66, 1520–1523.Wang, M., Carver, J. J., Phelan, V. V, Sanchez, L. M., Garg, N., Peng, Y., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.Bell, R., Carmeli, S., & Sar, N. (1994). Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. Journal of Natural Products, 57(11), 1587–1590.Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695.DasSarma, S., & DasSarma, P. (2012). Halophiles. ELS. John Wiley & Sons, Ltd: Chichester, 1–11.Ganapathy, K., Ramasamy, R., & Dhinakarasamy, I. (2018). Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 111, 102–108.Kobayashi, M. M., Aoki, S., Gato, K., Matsunami, K., Kurosu, M., & Kitagawa, I. (1994). Marine natural products. XXXIV. 1) Trisindole, a new antibiotic indole trimer, produced by a Bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull., 42(12), 2449–2451.Mansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. Marine Drugs, 9, 1440–1468.Müller, V., & Köcher, S. (2011). Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In K. Horikoshi (Ed.), Extremophiles Handbook (pp. 384–400). Springer.Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.Newman, D. J., & Giddings, L.-A. (2014). Natural products as leads to antitumor drugs. Phytochemistry Reviews, 13(1), 123–137.Pettit, R. K. (2009). Mixed fermentation for natural product drug discovery. Applied Microbiology and Biotechnology, 83(1), 19–25.Richter, M., & Rosselló-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126–19131.Schöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., … Bode, H. B. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem, 17(3), 247–253.Thompson, F., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431.Trigui, H., Masmoudi, S., Brochier-Armanet, C., Maalej, S., & Dukan, S. (2011). Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Canadian Journal of Microbiology, 57, 923–933.Veluri, R., Oka, I., Wagner-dobler, I., & Laatsch, H. (2003). New indole alkaloids from the north sea bacterium Vibrio parahaemolyticus. Journal of Natural Products, 66, 1520–1523.Wang, M., Carver, J. J., Phelan, V. V, Sanchez, L. M., Garg, N., Peng, Y., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.Facultad de IngenieríaUniversidad de La SabanaDoctorado en BiocienciasDoctor en BiocienciasORIGINALfinal.pdffinal.pdfVer documento en PDFapplication/pdf3598883https://intellectum.unisabana.edu.co/bitstream/10818/37414/1/final.pdfb679235917458cc3db636f3630cd5efeMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://intellectum.unisabana.edu.co/bitstream/10818/37414/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/37414/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD53carta.pdfcarta.pdfCartaapplication/pdf979403https://intellectum.unisabana.edu.co/bitstream/10818/37414/4/carta.pdfe8d165e8a67cf0c7d056b58a21340878MD54TEXTfinal.pdf.txtfinal.pdf.txtExtracted texttext/plain237699https://intellectum.unisabana.edu.co/bitstream/10818/37414/5/final.pdf.txt7c294ab13f4c008be08d4466670b96dbMD5510818/37414oai:intellectum.unisabana.edu.co:10818/374142022-02-18 12:08:41.589Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K |