Nonlinear analysis of the electroencephalogram in depth of anesthesia

12 página

Autores:
Mosquera Dusan, Oscar Leonardo
Botero Rosas, Daniel Alfonso
Cagy, Mauricio
Henao Idárraga, Rubén Darío
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad de la Sabana
Repositorio:
Repositorio Universidad de la Sabana
Idioma:
eng
OAI Identifier:
oai:intellectum.unisabana.edu.co:10818/43735
Acceso en línea:
https://revistas.udea.edu.co/index.php/ingenieria/article/view/17958
http://hdl.handle.net/10818/43735
Palabra clave:
Depth of anesthesia monitoring
EEG features extraction
Nonlinear complexity analyses
Digital signal processing
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id REPOUSABA2_3dedc71e69a9730eae88a4dbac73f987
oai_identifier_str oai:intellectum.unisabana.edu.co:10818/43735
network_acronym_str REPOUSABA2
network_name_str Repositorio Universidad de la Sabana
repository_id_str
spelling Mosquera Dusan, Oscar LeonardoBotero Rosas, Daniel AlfonsoCagy, MauricioHenao Idárraga, Rubén Darío10/20/2020 11:102020-10-20T16:10:29Z2015-02-090120-6230https://revistas.udea.edu.co/index.php/ingenieria/article/view/17958http://hdl.handle.net/10818/4373510.17533/udea.redin.n75a0612 páginaDigital signal processing of the electroencephalogram (EEG) became important in monitoring depth of anesthesia (DoA) being used to provide a better anesthetic technique. The objective of this work was to conduct a review about nonlinear mathematical methods applied recently to the analyses of nonlinear non-stationary EEG signal. A review was conducted showing time- and frequency-domain nonlinear mathematical methods recently applied to EEG analysis: Approximate Entropy, Sample Entropy, Spectral Entropy, Permutation Entropy, Wavelet Transform, Wavelet Entropy, Bispectrum, Bicoherence and Hilbert Huang Transform. Some algorithms were implemented and tested in one EEG signal record from a patient at The Sabana University Clinic. Recently published results from different methods are discussed. Nonlinear techniques such as entropy analysis in time domain and combination with wavelet transform, and Hilbert Huang transform in frequency domain have shown promising results in classifications of depth of anesthesia stages.application/pdfengRevista Facultad de Ingenieria Universidad de AntioquiaRev. Fac. Ing. Univ. Antioquia N. º 75 pp. 45-56, June, 2015Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Universidad de La SabanaIntellectum Repositorio Universidad de La SabanaDepth of anesthesia monitoringEEG features extractionNonlinear complexity analysesDigital signal processingNonlinear analysis of the electroencephalogram in depth of anesthesiaAnálisis no lineal de la señal de electroencefalograma en profundidad anestésicaarticlepublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://intellectum.unisabana.edu.co/bitstream/10818/43735/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/43735/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD5310818/43735oai:intellectum.unisabana.edu.co:10818/437352022-05-10 05:20:22.676Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K
dc.title.es_CO.fl_str_mv Nonlinear analysis of the electroencephalogram in depth of anesthesia
dc.title.alternative.es_CO.fl_str_mv Análisis no lineal de la señal de electroencefalograma en profundidad anestésica
title Nonlinear analysis of the electroencephalogram in depth of anesthesia
spellingShingle Nonlinear analysis of the electroencephalogram in depth of anesthesia
Depth of anesthesia monitoring
EEG features extraction
Nonlinear complexity analyses
Digital signal processing
title_short Nonlinear analysis of the electroencephalogram in depth of anesthesia
title_full Nonlinear analysis of the electroencephalogram in depth of anesthesia
title_fullStr Nonlinear analysis of the electroencephalogram in depth of anesthesia
title_full_unstemmed Nonlinear analysis of the electroencephalogram in depth of anesthesia
title_sort Nonlinear analysis of the electroencephalogram in depth of anesthesia
dc.creator.fl_str_mv Mosquera Dusan, Oscar Leonardo
Botero Rosas, Daniel Alfonso
Cagy, Mauricio
Henao Idárraga, Rubén Darío
dc.contributor.author.none.fl_str_mv Mosquera Dusan, Oscar Leonardo
Botero Rosas, Daniel Alfonso
Cagy, Mauricio
Henao Idárraga, Rubén Darío
dc.subject.es_CO.fl_str_mv Depth of anesthesia monitoring
EEG features extraction
Nonlinear complexity analyses
Digital signal processing
topic Depth of anesthesia monitoring
EEG features extraction
Nonlinear complexity analyses
Digital signal processing
description 12 página
publishDate 2015
dc.date.accessioned.none.fl_str_mv 10/20/2020 11:10
dc.date.issued.none.fl_str_mv 2015-02-09
dc.date.available.none.fl_str_mv 2020-10-20T16:10:29Z
dc.type.en.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.hasVersion.es_CO.fl_str_mv publishedVersion
dc.identifier.issn.none.fl_str_mv 0120-6230
dc.identifier.other.none.fl_str_mv https://revistas.udea.edu.co/index.php/ingenieria/article/view/17958
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10818/43735
dc.identifier.doi.none.fl_str_mv 10.17533/udea.redin.n75a06
identifier_str_mv 0120-6230
10.17533/udea.redin.n75a06
url https://revistas.udea.edu.co/index.php/ingenieria/article/view/17958
http://hdl.handle.net/10818/43735
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Rev. Fac. Ing. Univ. Antioquia N. º 75 pp. 45-56, June, 2015
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Revista Facultad de Ingenieria Universidad de Antioquia
dc.source.es_CO.fl_str_mv Universidad de La Sabana
Intellectum Repositorio Universidad de La Sabana
institution Universidad de la Sabana
bitstream.url.fl_str_mv https://intellectum.unisabana.edu.co/bitstream/10818/43735/2/license_rdf
https://intellectum.unisabana.edu.co/bitstream/10818/43735/3/license.txt
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
f52a2cfd4df262e08e9b300d62c85cab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Intellectum Universidad de la Sabana
repository.mail.fl_str_mv contactointellectum@unisabana.edu.co
_version_ 1811952201899180032