Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles
121 páginas
- Autores:
-
Uscátegui Maldonado, Yomaira Lisnedy
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de la Sabana
- Repositorio:
- Repositorio Universidad de la Sabana
- Idioma:
- spa
- OAI Identifier:
- oai:intellectum.unisabana.edu.co:10818/35573
- Acceso en línea:
- http://hdl.handle.net/10818/35573
- Palabra clave:
- Polímeros
Aceite de ricino
Suturas (Cirugía)
Materiales biomédicos
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
REPOUSABA2_28c1817c2d9739014275810875a7c039 |
---|---|
oai_identifier_str |
oai:intellectum.unisabana.edu.co:10818/35573 |
network_acronym_str |
REPOUSABA2 |
network_name_str |
Repositorio Universidad de la Sabana |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles |
title |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles |
spellingShingle |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles Polímeros Aceite de ricino Suturas (Cirugía) Materiales biomédicos |
title_short |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles |
title_full |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles |
title_fullStr |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles |
title_full_unstemmed |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles |
title_sort |
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles |
dc.creator.fl_str_mv |
Uscátegui Maldonado, Yomaira Lisnedy |
dc.contributor.advisor.none.fl_str_mv |
Valero Valdivieso, Manuel Fernando Díaz Barrera, Luis Eduardo |
dc.contributor.author.none.fl_str_mv |
Uscátegui Maldonado, Yomaira Lisnedy |
dc.subject.es_CO.fl_str_mv |
Polímeros Aceite de ricino Suturas (Cirugía) Materiales biomédicos |
topic |
Polímeros Aceite de ricino Suturas (Cirugía) Materiales biomédicos |
description |
121 páginas |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-03-14 |
dc.date.accessioned.none.fl_str_mv |
5/23/2019 8:42 |
dc.date.available.none.fl_str_mv |
5/23/2019 8:42 |
dc.type.es_CO.fl_str_mv |
doctoralThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.local.none.fl_str_mv |
Tesis de doctorado |
dc.type.hasVersion.es_CO.fl_str_mv |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10818/35573 |
dc.identifier.local.none.fl_str_mv |
272175 TE10131 |
url |
http://hdl.handle.net/10818/35573 |
identifier_str_mv |
272175 TE10131 |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de La Sabana |
dc.source.es_CO.fl_str_mv |
instname:Universidad de La Sabana reponame:Intellectum Repositorio Universidad de La Sabana |
instname_str |
Universidad de La Sabana |
institution |
Universidad de la Sabana |
reponame_str |
Intellectum Repositorio Universidad de La Sabana |
collection |
Intellectum Repositorio Universidad de La Sabana |
bitstream.url.fl_str_mv |
https://intellectum.unisabana.edu.co/bitstream/10818/35573/1/Final.pdf https://intellectum.unisabana.edu.co/bitstream/10818/35573/2/license_rdf https://intellectum.unisabana.edu.co/bitstream/10818/35573/3/license.txt https://intellectum.unisabana.edu.co/bitstream/10818/35573/4/Carta.pdf https://intellectum.unisabana.edu.co/bitstream/10818/35573/5/Final.pdf.txt |
bitstream.checksum.fl_str_mv |
c31d712439baf1443a767343f66bf98d 4460e5956bc1d1639be9ae6146a50347 f52a2cfd4df262e08e9b300d62c85cab ad328d99c79696b2d5d17968f98e690e 70303a602b149b7d82043adac8cc026e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Intellectum Universidad de la Sabana |
repository.mail.fl_str_mv |
contactointellectum@unisabana.edu.co |
_version_ |
1811952271367340032 |
spelling |
Valero Valdivieso, Manuel FernandoDíaz Barrera, Luis EduardoUscátegui Maldonado, Yomaira Lisnedy5/23/2019 8:425/23/2019 8:422019-03-14http://hdl.handle.net/10818/35573272175TE10131121 páginasLos poliuretanos (PUs) son ampliamente utilizados en la preparación de dispositivos médicos debido a su biocompatibilidad, biodegradabilidad y no toxicidad cuando se comparan con otros polímeros [Park 2013]. Dentro de las aplicaciones como biomateriales de los PUs se encuentran: suturas, catéteres, corazón artificial, prótesis vasculares, recubrimientos para heridas y revestimiento compatible con la sangre [Rocco 2014]. La aplicación de PUs para una función específica dentro del cuerpo humano depende de propiedades mecánicas, de adhesión, de superficie, biodegradabilidad, entre otras [Chen 2013, St John 2014]. Un grupo de biomateriales que se encuentran en constante desarrollo corresponde a los dispositivos para cierre de heridas donde se localizan las suturas. Hasta la fecha, los materiales de sutura que se emplean con mayor frecuencia en cirugías son polipropileno (no absorbible) y polidioxanona (absorbible) [Simón-Allué 2014]. Diversas investigaciones se han enfocado en introducir mejoras en los materiales de sutura, pero a la fecha aún se presentan inconvenientes [Linderman 2015].application/pdfspaUniversidad de La SabanaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2instname:Universidad de La Sabanareponame:Intellectum Repositorio Universidad de La SabanaPolímerosAceite de ricinoSuturas (Cirugía)Materiales biomédicosPoliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbiblesdoctoralThesisTesis de doctoradopublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_db06Arshad, N., Zia, K. M., Jabeen, F., Anjum, M. N., Akram, N., & Zuber, M. (2018). Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. International Journal of Biological Macromolecules, 111, 485–492.Baimark, Y., Molloy, R., Molloy, N., Siripitayananon, J., Punyodom, W., & Sriyai, M. (2005). Synthesis, characterization and melt spinning of a block copolymer of L-lactide and ε-caprolactone for potential use as an absorbable monofilament surgical suture. Journal of Materials Science: Materials in Medicine, 16(8), 699–707.Bakhshi, H., Yeganeh, H., Mehdipour-Ataei, S., Shokrgozar, M. A., Yari, A., & SaeediEslami, S. N. (2013). Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Materials Science and Engineering C, 33(1), 153–64.Basterretxea, A., Haga, Y., Sanchez-Sanchez, A., Isik, M., Irusta, L., Irusta, L., … Sardon, H. (2016). Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. European Polymer Journal, 84, 750–758.Bat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. a. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9(3), 385– 98.Bergmeister, H., Seyidova, N., Schreiber, C., Strobl, M., Grasl, C., Walter, I., … Schima, H. (2015). Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomaterialia, 11, 104–113.Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173–185.Chashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688–695.Chen, H., Yu, X., Zhou, W., Peng, S., & Zhao, X. (2018). Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polymer Testing, 70(July), 275–280.Chen, Q., Liang, S., & Thouas, G. a. (2013). Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 38(3–4), 584–671.Das, B., Konwar, U., Mandal, M., & Karak, N. (2013). Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products, 44, 396–404.Dave, V. J., & Patel, H. S. (2017). Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society, 21, 18–24.Domanska, A., & Boczkowska, A. (2014). Biodegradable polyurethanes from crystalline prepolymers. Polymer Degradation and Stability, 108, 175–181.dos Santos, D., Tavares, L., & Batalha, G. (2012). Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source. Journal of Achievements in Materials and Manufacturing Engineering, 54(2), 211–217.Dulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553– 560.Fernández-d’Arlas, B., Alonso-varona, A., Palomares, T., Corcuera, M. A., & Eceiza, A. (2015). Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polymer Degradation and Stability, 122, 153– 160.Firdaus, F. E. (2014). Synergization of silicone with developed crosslinking to soy-based polyurethane foam matrix. Materials Science and Engineering, 58, 012023.Ganji, Y., Kasra, M., Salahshour, S., & Bagheri, M. (2014). Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol. Materials Science and Engineering CEngineering C, 42, 341–349.Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12(06), 301–47.He, W., & Benson, R. (2012). Polymeric biomaterials. In S. Ebnesajjad (Ed.), Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications (pp. 87–107). Elsevier.Ionescu, M., Radojčić, D., Wan, X., Shrestha, M. L., Petrović, Z. S., & Upshaw, T. A. (2016). Highly functional polyols from castor oil for rigid polyurethanes. European Polymer Journal, 84, 736–749.Ismail, E. A., Motawie, A. M., & Sadek, E. M. (2011). Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egyptian Journal of Petroleum, 20, 1–8.Javaid, M. A., Khera, R. A., Zia, K. M., Saito, K., Bhatti, I. A., & Asghar, M. (2018). Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential. International Journal of Biological Macromolecules, 115, 375–384.Jayavani, S., Sunanda, S., Varghese, T. O., & Nayak, S. K. (2017). Synthesis and characterizations of sustainable polyester polyols from non-edible vegetable oils: thermal and structural evaluation. Journal of Cleaner Production, 162, 795–805.Juita, Dlugogorski, B. Z., Kennedy, E. M., & Mackie, J. C. (2012). Low temperature oxidation of linseed oil: a review. Fire Science Reviews, 1–36.Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115(November 2017), 41–48.Kiran, S., James, N. R., Jayakrishnan, A., & Joseph, R. (2012). Polyurethane thermoplastic elastomers with inherent radiopacity for biomedical applications. Journal of Biomedical Materials Research. Part A, 100(12), 3472–3479.Kotula, A. P., Snyder, C. R., & Migler, K. B. (2017). Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 117, 1–10.Kucinska-lipka, J., Gubanska, I., Strankowski, M., Cie, H., Filipowicz, N., & Janik, H. (2017). Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modi fi ed with L-ascorbic acid, as materials for soft tissue regeneration. Materials Science and Engineering C, 75, 671–681.Kumar, A., Lale, S. V, Alex, M. R. A., Choudhary, V., & Koul, V. (2017). Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: in-vitro and in-vivo studies. Colloids and Surfaces B: Biointerfaces, 149, 369–378.Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules, 11, 2825–2835.Luo, Z., Shi, Y., Zhao, D., & He, M. (2011). Synthesis of epoxidatied castor oil and its effect on the properties of waterborne polyurethane. Procedia Engineering, 18, 37–42.Madra, H., Tantekin-Ersolmaz, B., & Guner, F. S. (2009). Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polymer Testing, 28, 773–779.Mahkam, M., & Sharifi-Sanjani, N. (2003). Preparation of new biodegradable polyurethanes as a therapeutic agent. Polymer Degradation and Stability, 80(2), 199–202.Maisonneuve, L., Chollet, G., Grau, E., & Cramail, H. (2016). Vegetable oils: a source of polyols for polyurethane materials. Oilseeds & Fats Crops and Lipids, 23(5), D508.Mangeon, C., Renard, E., Thevenieau, F., & Langlois, V. (2017). Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering C, 80, 760–770.Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692–1704.Miléo, P. C., Mulinari, D. R., Baptista, C. a. R. P., Rocha, G. J. M., & Gonçalves, a. R. (2011). Mechanical Behaviour of Polyurethane from Castor oil Reinforced Sugarcane Straw Cellulose Composites. Procedia Engineering, 10, 2068–2073.Murray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal, 49(7), 1782–1795.Mustapa, S. R., Aung, M. M., Ahmad, A., Mansor, A., & TianKhoon, L. (2016). Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices. Electrochimica Acta, 222, 293–302.Ng, W. S., Lee, C. S., Chuah, C. H., & Cheng, S. F. (2017). Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Industrial Crops and Products, 97, 65–78.Patil, C. K., Rajput, S. D., Marathe, R. J., Kulkarni, R. D., Phadnis, H., Sohn, D., … Gite, V. V. (2017). Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Progress in Organic Coatings, 106, 87–95.Petrović, Z. S., Milic, J., Zhang, F., & Ilavsky, J. (2017). Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer, 121, 26–37.Pfister, D. P., Xia, Y., & Larock, R. C. (2011). Recent advances in vegetable oil-based polyurethanes. ChemSusChem, 4(6), 703–17.Pillai, P. K. S., Li, S., Bouzidi, L., & Narine, S. S. (2016). Metathesized palm oil polyol for the preparation of improved bio-based rigid and flexible polyurethane foams. Industrial Crops & Products, 83, 568–576.Qiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2013). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(εcaprolactone). Journal of Biomedical Materials Research. Part A, 101(1), 75–86.Reddy, R., Deopura, B. L., & Joshi, M. (2010). Dry-jet-wet spun polyurethanes fibers. I. Optimization of the spinning parameters. Journal of Applied Polymer Science, 118(4), 2291–2303.Saciloto, T. R., Cervini, P., & Cavalheiro, É. T. G. (2013). Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screenprinted composite electrode. Journal of the Brazilian Chemical Society, 24(9), 1461– 1468.Scott Taylor, M., & Shalaby, S. W. (2013). Sutures. Biomaterials Science (Third Edit). Elsevier.Sharmin, E., Zafar, F., Akram, D., & Ahmad, S. (2013). Plant oil polyol nanocomposite for antibacterial polyurethane coating. Progress in Organic Coatings, 76, 541–547.Shelke, N., Nagarale, R., Kumbar, S. (2014). Polyurethanes. In Natural and Synthetic Biomedical Polymers (pp. 123–144). Saint Louis, MO, USA: Elsevier.Shourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947–952.Simón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1–11.St John, K. R. (2014). The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1332–41.Subramaniam, A., & Sethuraman, S. (2014). Biomedical applications of nondegradable polymers. In C. T. L. and M. D. Sangamesh G. Kumbar (Ed.), Natural and Synthetic Biomedical Polymers (pp. 301–308). Elsevier, Oxford.Thakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164.Uscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., & Valero, M. (2016). Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 27(18), 1860–1879.Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645.Valério, A., Araújo, P., & Sayer, C. (2013). Preparation of poly (urethane-urea) nanoparticles containing açaí oil by miniemulsion polymerization. Polímeros, 23, 451–455.Valero, M. F., & Gonzalez, a. (2012). Polyurethane adhesive system from castor oil modified by a transesterification reaction. Journal of Elastomers and Plastics, 44(5), 433–442.Vogels, R. R. M., Lambertz, A., Schuster, P., Jockenhoevel, S., Bouvy, N. D., DisselhorstKlug, C., … Klink, C. D. (2017). Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 105(1), 99–106.Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344.Wolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208–221.Wu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180(June 2017), 304–313.Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91– 143.Zhou, L., Yu, L., Ding, M., Li, J., Tan, H., Wang, Z., & Fu, Q. (2011). Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules, 44(4), 857–864.Zia, K. M., Barikani, M., Bhatti, I. A., Bhatti, M., & Bhatti, H. N. (2008). Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers. Journal of Applied Polymer Science, 110, 769–776.Zia, K. M., Bhatti, H. N., & Ahmad Bhatti, I. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: a review. Reactive & Functional Polymers, 67(8), 675–692.Zieleniewska, M., Auguscik, M., Prociak, A., Rojek, P., & Ryszkowska, J. (2014). Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Poly. Degrad. and Stability,108,241–249Anirudhan, T. S., Nair, S. S., & Nair, A. S. (2016). Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydrate Polymers, 152, 687–698.Arévalo, F., Uscategui, Y. L., Diaz, L., Cobo, M., & Valero, M. F. (2016). Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. Journal of Biomaterials Applications, 31(5), 708–720.Aung, M. M., Yaakob, Z., Kamarudin, S., & Abdullah, L. C. (2014). Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Industrial Crops and Products, 60, 177–185.Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365–5377.Basak, P., & Adhikari, B. (2012). Effect of the solubility of antibiotics on their release from degradable polyurethane. Materials Science and Engineering C, 32(8), 2316–2322.Bat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. a. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9(3), 385– 98.Borrero-López, A. M., Valencia, C., & Franco, J. M. (2017). Rheology of lignin-based chemical oleogels prepared using diisocyanate crosslinkers: Effect of the diisocyanate and curing kinetics. European Polymer Journal, 89, 311–323.Braun, U., Lorenz, E., Weimann, C., Sturm, H., Karimov, I., Ettl, J., … Wildgruber, M. (2016). Mechanic and surface properties of central-venous port catheters after removal: a comparison of polyurethane and silicon rubber materials. Journal of the Mechanical Behavior of Biomedical Materials, 64, 281–291.Cakić, S. M., Ristić, I. S., Cincović, M. M., Nikolić, N. C., Nikolić, L., & Cvetinov, M. J. (2017). Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly (caprolactone) diol. Progress in Organic Coatings, 105, 111–122.Carriço, C. S., Fraga, T., & Pasa, V. M. D. (2016). Production and characterization of polyurethane foams from a simple mixture of castor oil , crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal, 85, 53–61.Chan-Chan, L. H., Solis-Correa, R., Vargas-Coronado, R. F., Cervantes-Uc, J. M., CauichRodríguez, J. V., Quintana, P., & Bartolo-P??rez, P. (2010). Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomaterialia, 6(6), 2035–2044.Chashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688–695.Chen, H., Yu, X., Zhou, W., Peng, S., & Zhao, X. (2018). Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polymer Testing, 70(July), 275–280.Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406–419.Corcuera, M. A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I., & Eceiza, A. (2010). Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 95(11), 2175–2184.Członka, S., Bertino, M. F., & Strzelec, K. (2018). Rigid polyurethane foams reinforced with industrial potato protein. Polymer Testing, 68(April), 135–145.Dulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553– 560.Ferreira, P., Pereira, R., Coelho, J. F. J., Silva, A. F. M., & Gil, M. H. (2007). Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. International Journal of Biological Macromolecules, 40(2), 144–152.Garg, B., Sandhu, V., Sood, N., Sood, A., & Malhotra, V. (2012). Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Polish Journal of Pathology, 63(3), 172–178.Gossart, A., Battiston, K. G., Gand, A., Pauthe, E., & Santerre, J. P. (2018). Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomaterialia, 66, 129–140.Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12(06), 301–47.Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Progress in Organic Coatings, 80, 39–48.Hejna, A., Kirpluks, M., Kosmela, P., Cabulis, U., Haponiuk, J., & Piszczyk, Ł. (2017). The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Industrial Crops and Products, 95, 113– 125.Hormaiztegui, M. E. V., Aranguren, M. I., & Mucci, V. L. (2018). Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 102(March), 151–160.Hou, Z., Zhang, H., Qu, W., Xu, Z., & Han, Z. (2016). Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε -caprolactone-co- D,L -lactide), and diurethane diisocyanates with uniform hard segment: synthesis and properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(18), 947–956.Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115(November 2017), 41–48.Kanmani, P., & Rhim, J.-W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644–652.Kaur, G., Mahajan, M., & Bassi, P. (2013). Derivatized Polysaccharides: preparation, characterization, and application as bioadhesive polymer for drug delivery. International Journal of Polymeric Materials, 62(9), 475–481.Kim, H., Kang, D.-H., Kim, M., Jiao, A., Kim, D.-H., & Suh, K.-Y. (2012). Patterning methods for polymers in cell and tissue engineering, 40(6), 1–29.Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.Liu, Y., Inoue, Y., Sakata, S., Kakinoki, S., Yamaoka, T., & Ishihara, K. (2014). Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Journal of Biomaterials Science, Polymer Edition, 25(5), 474–486.Marques, D. S., Santos, J. M. C., Ferreira, P., Correia, T. R., Correia, I. J., Gil, M. H., & Baptista, C. M. S. G. (2016). Photocurable bioadhesive based on lactic acid. Materials Science and Engineering C, 58, 601–609.Mekewi, M. A., Ramadan, A. M., ElDarse, F. M., Abdel Rehim, M. H., Mosa, N. A., & Ibrahim, M. A. (2017). Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egyptian Journal of Petroleum, 26(1), 9–15.Meneguelli de Souza, L. C., de Carvalho, L. P., Araújo, J. S., de Melo, E. J. T., & Machado, O. L. T. (2018). Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. International Journal of Biological Macromolecules, 113(1), 821–828.Mi, H. Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L. S. (2017). Postcrosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials and Design, 127(February), 106–114.Morral-Ruíz, G., Melgar-Lesmes, P., García, M. L., Solans, C., & García-Celma, M. J. (2014). Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 461(1–2), 1–13.Murray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal, 49(7), 1782–1795.Omonov, T. S., Kharraz, E., & Curtis, J. M. (2017). Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Industrial Crops and Products, 107(May), 378–385.Park, H., Gong, M.-S., Park, J.-H., Moon, S.-I., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962–71.Pergal, M. V, Antic, V. V, Tovilovic, G., Nestorov, J., Vasiljevic-Radovic, D., & Djonlagic, J. (2012). In Vitro Biocompatibility Evaluation of Novel Urethane–Siloxane Co-Polymers Based on Poly(ϵ-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(ϵCaprolactone). Journal of Biomaterials Science, Polymer Edition, 23(13), 1629–1657.Qiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2013). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(εcaprolactone). Journal of Biomedical Materials Research. Part A, 101(1), 75–86.Rezvanain, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S. F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140.Sáenz-Pérez, M., Lizundia, E., Laza, J. M., García-Barrasa, J., Vilas, J. L., & León, L. M. (2016). Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Adv., 6(73), 69094–69102.Saikia, A., & Karak, N. (2017). Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polymer Degradation and Stability, 135, 8–17.Shah, S. A. A., Imran, M., Lian, Q., Shehzad, F. K., Athir, N., Zhang, J., & Cheng, J. (2018). Curcumin incorporated polyurethane urea elastomers with tunable thermo-mechanical properties. Reactive and Functional Polymers, 128(May), 97–103.Sheikh, Z., Khan, A. S., Roohpour, N., Glogauer, M., & Rehman, I. U. (2016). Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Materials Science and Engineering C, 68, 267–275.Shourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947–952.Simón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1–11.Špírková, M., Serkis, M., Poręba, R., Machová, L., Hodan, J., Kredatusová, J., … Zhigunov, A. (2016). Experimental study of the simulated process of degradation of polycarbonateand d,l-lactide-based polyurethane elastomers under conditions mimicking the physiological environment. Polymer Degradation and Stability, 125, 115–128. Temenoff, J. S., & Mikos, A. G. (2008). Biomaterials. (Pearson, Ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall.Thakur, S., & Hu, J. (2017). Polyurethane : A Shape Memory Polymer (SMP). In F. Yilmaz (Ed.), Polyurethane. InTechOpen.Thakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164.Uscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., & Valero, M. (2016). Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 27(18), 1860–1879.Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645.Valero, M. F., & Ortegón, Y. (2015). Polyurethane elastomers-based modified castor oil and poly(e-caprolactone) for surface-coating applications: synthesis, characterization, and in vitro degradation. Journal of Elastomers and Plastics, 47(4), 360–369Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159.Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344.Wolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208–221.Wu, C.-S. (2016). Enhanced antibacterial activity, antioxidant and in vitro biocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872–880.Wu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180(June 2017), 304–313.Yoshida, K., Jiang, H., Kim, M. J., Vink, J., Cremers, S., Paik, D., … Myers, K. (2014). Quantitative evaluation of collagen crosslinks and corresponding tensile mechanical properties in mouse cervical tissue during normal pregnancy. PLoS ONE, 9(11).Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91– 143.Adolph, E. J., Pollins, A. C., Cardwell, N. L., Davidson, J. M., Guelcher, S. A., & Nanney, L. B. (2014). Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. Journal of Biomaterials Science. Polymer Edition, 25(17), 1973–85.Alishiri, M., Shojaei, A., Abdekhodaie, M. J., & Yeganeh, H. (2014). Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Materials Science and Engineering C, 42, 763–73.Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Heras, Á. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biol.,3,203–230.Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365–5377.Basak, P., & Adhikari, B. (2012). Effect of the solubility of antibiotics on their release from degradable polyurethane. Materials Science and Engineering C, 32(8), 2316–2322.Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173–185.Chen, R., Zhang, C., & Kessler, M. R. (2014). Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying oh numbers. Journal of Applied Polymer Science, 132(1), 1–10.Clauss, M., Trampuz, A., Borens, O., Bohner, M., & Ilchmann, T. (2010). Biofilm formation on bone grafts and bone graft substitutes: Comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomaterialia, 6(9), 3791–3797.Coakley, D. N., Shaikh, F. M., O’Sullivan, K., Kavanagh, E. G., Grace, P. A., & McGloughlin, T. M. (2015). In vitro evaluation of acellular porcine urinary bladder extracellular matrix - A potential scaffold in tissue engineered skin. Wound Medicine, 10– 11, 9–16.Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406–419.Das, B., Konwar, U., Mandal, M., & Karak, N. (2013). Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products, 44, 396–404.Giannitelli, S. M., Basoli, F., Mozetic, P., Piva, P., Bartuli, F. N., Luciani, F., … Licoccia, S. (2015). Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 51, 329–35.Gogoi, S., Barua, S., & Karak, N. (2014). Biodegradable and thermostable synthetic hyperbranched poly(urethane-urea)s as advanced surface coating materials. Progress in Organic Coatings, 77(9), 1418–1427.Guan, J., Sacks, M. S., Beckman, E. J., & Wagner, W. R. (2004). Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 25(1), 85–96.Han, W., Tu, M., Zeng, R., Zhao, J., & Zhou, C. (2012). Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes. Carbohydrate Polymers, 90(3), 1353–1361.Jing, X., Mi, H. Y., Huang, H. X., & Turng, L. S. (2016). Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. Journal of the Mechanical Behavior of Biomedical Materials, 64, 94–103.Kara, F., Aksoy, E. A., Yuksekdag, Z., Aksoy, S., & Hasirci, N. (2015). Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization. Applied Surface Science, 357, 1692–1702.Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science & Engineering. C, Materials for Biological Applications, 46, 166–76.Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.Li, Y., & Shimizu, H. (2007). Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer. Macromolecular Bioscience, 7, 921–928.McBane, J. E., Sharifpoor, S., Cai, K., Labow, R. S., & Santerre, J. P. (2011). Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials, 32(26), 6034–44.Ortuno-Lizarán, I., Vilarino-Feltrer, G., Martinez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 1–12.Park, H., Gong, M.-S., Park, J.-H., Moon, S.-I., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962–71.Rajan, K. P., Al-ghamdi, A., Parameswar, R., & Nando, G. B. (2013). Blends of Thermoplastic Polyurethane and Polydimethylsiloxane Rubber: Assessment of Biocompatibility and Suture Holding Strength of Membranes. International Journal of Biomaterials, 1–7.Reddy, T. T., Kano, A., Maruyama, A., & Takahara, A. (2010). Synthesis, characterization and drug release of biocompatible/biodegradable non-toxic poly(urethane urea)s based on poly(epsilon-caprolactone)s and lysine-based diisocyanate. Journal of Biomaterials Science, Polymer Edition, 21(November 2014), 1483–1502.Rezvanain, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S. F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140.Rocco, K. a, Maxfield, M. W., Best, C. a, Dean, E. W., & Breuer, C. K. (2014). In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Engineering. Part B, 20(6), 628–640.Rodríguez-Galán, A., Franco, L., & Puiggal, J. (2011). Biodegradable polyurethanes and poly(ester amide)s. In A. Lendlein & A. Sisson (Eds.), Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications (First, pp. 133–154).Shahrousvand, M., Sadeghi, G. M. M., Shahrousvand, E., Ghollasi, M., & Salimi, A. (2017). Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids and Surfaces B: Biointerfaces, 156, 292–304.Spontón, M., Casis, N., Mazo, P., Raud, B., Simonetta, A., Ríos, L., & Estenoz, D. (2013). Biodegradation study by Pseudomonas sp . of flexible polyurethane foams derived from castor oil. International Biodeterioration & Biodegradation, 85, 85–94.St John, K. R. (2014). The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1332–41.Thakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164.Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. R., Park, C. H., & Kim, C. S. (2012). One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide)) - Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning. Materials Chemistry and Physics, 134(2–3), 557–561.Tsai, M.-C., Hung, K.-C., Hung, S.-C., & Hsu, S. (2015). Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids and Surfaces. B: Biointerfaces, 125, 34–44.Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645.van Minnen, B., Stegenga, B., van Leeuwen, M. B. M., van Kooten, T. G., & Bos, R. R. M. (2006). A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products. Journal of Biomed. Materials Research. Part A, 76(2), 377–85.Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159.Vilariño Feltrer, G., Martínez Ramos, C., Monleon De La Fuente, A., Vallés Lluch, A., Moratal Pérez, D., Barcia Albacar, J., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199–211.Wang, W., Guo, Y., & Otaigbe, J. (2008). Synthesis and characterization of novel biodegradable and biocompatible poly (ester-urethane) thin films prepared by homogeneous solution polymerization. Polymer, 49, 4393–4398.Wang, Y., Yu, Y., Zhang, L., Qin, P., & Wang, P. (2015). One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance. Journal of Biomaterials Science, Polymer Edition, 26(8), 459–467.Wu, C.-S. (2016). Enhanced antibacterial activity, antioxidant and in vitro biocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872–880.Zhou, L., Liang, D., He, X., Li, J., Tan, H., Li, J., … Gu, Q. (2012). The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials, 33(9), 2734–2745.Ballerini, P., Diomede, F., Petragnani, N., Cicchitti, S., Merciaro, I., Cavalcanti, M. F. X. B., & Trubiani, O. (2017). Conditioned medium from relapsing-remitting multiple sclerosis patients reduces the expression and release of inflammatory cytokines induced by LPSgingivalis in THP-1 and MO3.13 cell lines. Cytokine, 96(December 2016), 261–272.Chanput, W., Mes, J., Vreeburg, R. A. M., Savelkoul, H. F. J., & Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: A tool to study inflammation modulating effects of food-derived compounds. Food and Function, 1(3), 254–261.Dash, B. C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., … Pandit, A. (2015). An injectable elastin-based gene delivery platform for dose- dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 65, 126–139.Dreskin, S. C., Thomas, G. W., Dale, S. N., & Heasley, L. E. (2001). Isoforms of Jun Kinase Are Differentially Expressed and Activated in Human Monocyte/Macrophage (THP-1) Cells. The Journal of Immunology, 166(9), 5646–5653.Lin, T. H., Yao, Z., Sato, T., Keeney, M., Li, C., Pajarinen, J., … Goodman, S. B. (2014). Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report. Acta Biomaterialia, 10(8), 3747–3755.Lund, M. E., To, J., O’Brien, B. A., & Donnelly, S. (2016). The choice of phorbol 12- myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, 430, 64–70.Park, E. K., Jung, H. S., Yang, H. I., Yoo, M. C., Kim, C., & Kim, K. S. (2007). Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflammation Research, 56, 45–50.Small, A., Lansdown, N., Al-Baghdadi, M., Quach, A., & Ferrante, A. (2018). Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. Journal of Immunological Methods, (May), 0–1.Starr, T., Bauler, T. J., Malik-Kale, P., & Steele-Mortimer, O. (2018). The phorbol 12- myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE, 13(3), 1–13.Angeloni, V., Contessi, N., De Marco, C., Bertoldi, S., Tanzi, M. C., Daidone, M. G., & Farè, S. (2017). Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomaterialia, 63, 306–316.Gabriel, L. P., Santos, M. E. M. do., Jardini, A. L., Bastos, G. N. T., Dias, C. G. B. T., Webster, T. J., & Maciel Filho, R. (2017). Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(1), 201–208.Garg, B., Sandhu, V., Sood, N., Sood, A., & Malhotra, V. (2012). Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Polish Journal of Pathology, 63(3), 172–178.Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for Valid Histopathologic Scoring in Research. Veterinary Pathology, 50(6), 1007–1015.Gossart, A., Battiston, K. G., Gand, A., Pauthe, E., & Santerre, J. P. (2018). Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomaterialia, 66, 129–140.Inzana, J. A., Schwarz, E. M., Kates, S. L., & Awad, H. A. (2016). Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials, 81, 58–71.Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M. C., Imani, R., … Farè, S. (2018). Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering C, 82(August 2017), 130–140.Ng, W. S., Lee, C. S., Chuah, C. H., & Cheng, S. F. (2017). Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Industrial Crops and Products, 97, 65–78.Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159.Zhang, J., Woodruff, T. M., Clark, R. J., Martin, D. J., & Minchin, R. F. (2016). Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomaterialia, 41, 264–272.Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068–2075.Caracciolo, P. C., & Abraham, G. A. (2015). Poliuretanos biomédicos: síntesis, propiedaes, procesamiento y aplicaciones. In H. Sousa, M. Braga, & A. Sosnik (Eds.), Biomateriales aplicados al diseño de sistemas terapéuticos avanzados (pp. 147–181). Universidad de Coimbra.Valero-Valdivieso, M., Ortegon, Y., & Uscategui, Y. (2013). Biopolímeros: avances y perspectivas. Dyna, 80(181), 171–180. Retrieved fromFuentes, L. E., Pérez, S., Martínez, S. I., & García, Á. R. (2011). Redes poliméricas interpenetradas de poliuretano a partir de aceite de ricino modificado y poliestireno: miscibilidad y propiedades mecánicas en función de la composición. Revisata Ion, 24(2), 45–50.Valero, M. F., & Díaz, L. E. (2014). Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: síntesis, propiedades mecánicas y térmicas y degradación in vitro. Quimica Nova, 37(9), 1441–1445.Valero, M. F., Pulido, J. E., Ramírez, Á., & Cheng, Z. (2009). Determinación de la densidad de entrecruzamiento de poliuretanos obtenidos a partir de aceite de ricino modificado por transesterificación. Polímeros, 19(1), 14–21.Estrada, A., & Herrera, J. (2013). Síntesis de materiales a base de uretano reforzados con nanopartículas metálicas. I. Síntesis y caracterización. Revista Iberoamericana de Polímeros, 14(1), 28–38. Retrieved fromLarraza, Í. (2012). Desarrollo de nuevas estrategias para la preparación de nanocomposites con propriedades antimicrobianas. Universidad Autónoma de Madrid.Rodríguez, A., & Rodríguez, Y. (2015). Biodegradación depoliuretao mediante el uso del hongo Pestalotiopsis microspora. Barrancabermeja, Santander-Colombia.Gómez Estrada, H. A., González Ruiz, K. N., & Medina, J. D. (2011). Actividad antiinflamatoria de productos naturales. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 10(3), 182–217.González, R., Zamora, Z., & Alonso, Y. (2009). Citocinas anti-inflamatorias y sus acciones y efectos en la sepsis y el choque séptico. REDVET. Revista Electrónica de Veterinaria, 10(9), 1–11.Oliveira, C. M., Sakata, R. K., Issy, A. M., & Gerola, L. R. (2011). Citocinas y dolor. Revista Brasileira de Anestesiología, 61(2), 137–142.Facultad de IngenieríaUniversidad de La SabanaDoctorado en BiocienciasDoctor en BiocienciasORIGINALFinal.pdfFinal.pdfVer documento en PDFapplication/pdf3458007https://intellectum.unisabana.edu.co/bitstream/10818/35573/1/Final.pdfc31d712439baf1443a767343f66bf98dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://intellectum.unisabana.edu.co/bitstream/10818/35573/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8498https://intellectum.unisabana.edu.co/bitstream/10818/35573/3/license.txtf52a2cfd4df262e08e9b300d62c85cabMD53Carta.pdfCarta.pdfCartaapplication/pdf188713https://intellectum.unisabana.edu.co/bitstream/10818/35573/4/Carta.pdfad328d99c79696b2d5d17968f98e690eMD54TEXTFinal.pdf.txtFinal.pdf.txtExtracted texttext/plain263070https://intellectum.unisabana.edu.co/bitstream/10818/35573/5/Final.pdf.txt70303a602b149b7d82043adac8cc026eMD5510818/35573oai:intellectum.unisabana.edu.co:10818/355732022-02-18 12:08:56.704Intellectum Universidad de la Sabanacontactointellectum@unisabana.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC8zLjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHA6Ly9pLmNyZWF0aXZlY29tbW9ucy5vcmcvbC9ieS1uYy1uZC8zLjAvODh4MzEucG5nIiAvPjwvYT48YnIgLz5Fc3RlIDxzcGFuIHhtbG5zOmRjdD0iaHR0cDovL3B1cmwub3JnL2RjL3Rlcm1zLyIgaHJlZj0iaHR0cDovL3B1cmwub3JnL2RjL2RjbWl0eXBlL1RleHQiIHJlbD0iZGN0OnR5cGUiPm9icmE8L3NwYW4+IGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvMy4wLyI+bGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgMy4wIFVucG9ydGVkPC9hPi4K |