Interaction between biological and chemistry fungicides and tomato pollinators

1 recurso en línea (páginas 425-435).

Autores:
Tipo de recurso:
article
Fecha de publicación:
2018
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/2919
Acceso en línea:
http://repositorio.uptc.edu.co/handle/001/2919
Palabra clave:
Relación insecto-planta
Polen de abejas
Plantas melíferas
Agrosavia
Bees
Pollen load
Bacillus subtilis
Trifloxystrobin
Tebuconazole
Compatibility of agrochemicals
Rights
openAccess
License
Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
id REPOUPTC_243f0d596f92fefe3bd687005b754409
oai_identifier_str oai:repositorio.uptc.edu.co:001/2919
network_acronym_str REPOUPTC
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.none.fl_str_mv Interaction between biological and chemistry fungicides and tomato pollinators
Interacción entre fungicidas biológicos y químicos con polinizadores de tomate
title Interaction between biological and chemistry fungicides and tomato pollinators
spellingShingle Interaction between biological and chemistry fungicides and tomato pollinators
De Melo e Silva-Neto, Carlos
Relación insecto-planta
Polen de abejas
Plantas melíferas
Agrosavia
Bees
Pollen load
Bacillus subtilis
Trifloxystrobin
Tebuconazole
Compatibility of agrochemicals
title_short Interaction between biological and chemistry fungicides and tomato pollinators
title_full Interaction between biological and chemistry fungicides and tomato pollinators
title_fullStr Interaction between biological and chemistry fungicides and tomato pollinators
title_full_unstemmed Interaction between biological and chemistry fungicides and tomato pollinators
title_sort Interaction between biological and chemistry fungicides and tomato pollinators
dc.creator.none.fl_str_mv De Melo e Silva-Neto, Carlos
Ribeiro, Anna Clara Chaves
Gómes, Flaviana Lima
Neves, Jordana Guimarães
Campos de Melo, Aniela Pilar
Calil, Francine Neves
Abadia dos Reis, Nascimento
Franceschinelli, Edivani Villaron
author De Melo e Silva-Neto, Carlos
author_facet De Melo e Silva-Neto, Carlos
Ribeiro, Anna Clara Chaves
Gómes, Flaviana Lima
Neves, Jordana Guimarães
Campos de Melo, Aniela Pilar
Calil, Francine Neves
Abadia dos Reis, Nascimento
Franceschinelli, Edivani Villaron
author_role author
author2 Ribeiro, Anna Clara Chaves
Gómes, Flaviana Lima
Neves, Jordana Guimarães
Campos de Melo, Aniela Pilar
Calil, Francine Neves
Abadia dos Reis, Nascimento
Franceschinelli, Edivani Villaron
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Relación insecto-planta
Polen de abejas
Plantas melíferas
Agrosavia
Bees
Pollen load
Bacillus subtilis
Trifloxystrobin
Tebuconazole
Compatibility of agrochemicals
topic Relación insecto-planta
Polen de abejas
Plantas melíferas
Agrosavia
Bees
Pollen load
Bacillus subtilis
Trifloxystrobin
Tebuconazole
Compatibility of agrochemicals
description 1 recurso en línea (páginas 425-435).
publishDate 2018
dc.date.none.fl_str_mv 2018-09-20
2019-11-06T20:54:53Z
2019-11-06T20:54:53Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Text
https://purl.org/redcol/resource_type/ART
http://purl.org/coar/version/c_970fb48d4fbd8a85
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Silva Neto, Carlos De Melo E y otros. (2018). Interaction between biological and chemistry fungicides and tomato pollinators. Revista Colombiana de Ciencias Hortícolas, 12(2), 425-435. DOI: http://doi.org/10.17584/rcch.2018v12i2.7690. http://repositorio.uptc.edu.co/handle/001/2919
2422-3719
2422-3719
http://repositorio.uptc.edu.co/handle/001/2919
10.17584/rcch.2018v12i2.7690
identifier_str_mv Silva Neto, Carlos De Melo E y otros. (2018). Interaction between biological and chemistry fungicides and tomato pollinators. Revista Colombiana de Ciencias Hortícolas, 12(2), 425-435. DOI: http://doi.org/10.17584/rcch.2018v12i2.7690. http://repositorio.uptc.edu.co/handle/001/2919
2422-3719
10.17584/rcch.2018v12i2.7690
url http://repositorio.uptc.edu.co/handle/001/2919
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Artz, D.R. and T.L. Pitts-Singer. 2015. Effects of fungicide and adjuvant sprays on nesting behavior in two managed solitary bees, Osmia lignaria and Megachile rotundata. PloS One 10, e0135688. Doi: 10.1371/journal. pone.0135688
Barbosa, W.F., G. Smagghe, and R.N.C. Guedes. 2015. Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest. Manag. Sci. 71(8), 1049-1053. Doi: 10.1002/ ps.4025
Carvalho, S.M., G.A. Carvalho, C.F. Carvalho, J.S.S. Bueno- Filho, and A.P.M. Baptista. 2009. Toxicidade de acaricidas/ inseticidas empregados na citricultura para a abelha africanizada Apis mellifera L., 1758 (Hymenoptera: Apidae). Arq. Inst. Biol. 76(4), 597-606.
Costa, L.M., T.C. Grella, R.A. Barbosa, O. Malaspina, and R.C.F. Nocelli. 2015. Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiol. 62(4), 578-582. Doi: 10.13102/sociobiology. v62i4.792
Dafni, A., E. Pacini, and M. Nepi. 2005. Pollen and stigma biology. pp 83-142. In: Dafni, A., P. Kevan, and B. Husband (eds.). Practical pollination biology. Ontario, Canada
Degrandi-Hoffman, G., Y. Chen, E.W. Dejong, M.L. Chambers, and G. Hidalgo. 2015. Effects of oral exposure to fungicides on honey bee nutrition and virus levels. J. Econ. Entomol. 251(6), 1-11. Doi: 10.1093/jee/tov251
Embrapa. 2006. Sistema brasileiro de classificação de solos. 2nd ed. Rio de Janeiro, Brazil.
Fletcher, M. and L. Barnett. 2003. Bee poisoning incidents in the United Kingdom. Bull. Insectol. 56, 141-145.
Franceschinelli, E.V., M.A. Elias, L.L. Bergamini, C.M. Silva- Neto, and E.R. Sujii. 2017. Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil. J. Ins. Cons. 21(4), 715-726. Doi: 10.1007/s10841-017-0015-y
Freitas, B.M. and J.N. Pinheiro. 2010. Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecologia 14, 282-298. Doi: 10.4257/oeco.2010.1401.17
Gill, R.J. and N.E. Raine. 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28(1), 1459- 1471. Doi: 10.1111/1365-2435.12292
Hopwood, J., M. Vaughan, M. Shepherd, D. Biddinger, E. Mader, S.H. Black, and C. Mazzacano. 2012. Are neonicotinoids killing bees? A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for action. Xerces Society for Intervertebrate Conservation, Portland, OR, USA.
Jacob, C.R.O., H.M. Soares, S.M. Carvalho, R.C.F. Nocelli, and O. Malaspina. 2013. Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille. Bull. Environ. Contam. Toxicol. 90(1), 69-72. Doi: 10.1007/ s00128-012-0892-4
Johnson, R.M., L. DahlGren, B.D. Siegfried, and M.D. Ellis. 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PloS One 8, e54092. Doi: 10.1371/journal.pone.0054092
Lima, M.A.P., G.F. Martins, E.E. Oliveira, and R.N.C. Guedes. 2016. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J. Comp. Physiol. A. 202(9-10), 733-747. Doi: 10.1007/ s00359-016-1110-3
McFrederick, Q.S., G. Ulrich, R. Mueller, and R. James. 2014. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc. R. Soc. Lond. B. Biol. Sci. 281(1779), 1-8.
Morandin, L.A., T.M. Laverty, and P.G. Kevan. 2001a. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J. Econ. Entomol. 94(2), 462-467. Doi: 10.1603/0022-0493-94.2.462
Morandin, L.A., T.M. Laverty, and P.G. Kevan. 2001b. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. J. Econ. Entomol. 94(1), 172-179. Doi: 10.1603/0022-0493-94.1.172
Mussen, E.C.M., I. Julio, E. Lopez, and C.Y. Peng. 2004. Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ. Entomol. 33(5), 1151-1154. Doi: 10.1603/0046-225X-33.5.1151
Ngugi, H.K., S. Dedej, K.S. Delaplane, A.T. Savelle, and H. Scherm. 2005. Effect of flowerapplied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biol Control 33(1), 32-38. Doi: 10.1016/j.biocontrol.2005.01.002
Nunes-Silva, P., M. Hnrcir, L. Shipp, V.L. Imperatriz-Fonseca, and P.G. Kevan. 2013. The behaviour of Bombus impatiens (Apidae, Bombini) on tomato (Lycopersicon esculentum Mill., Solanaceae) flowers: pollination and reward perception. J. Pollinat. Ecol. 11(5), 33-40.
Park, H.H., J.J. Kim, K.H. Kim, and S.G. Lee. 2013. Dissemination of Bacillus subtilis by using bee-vectoring technology in cherry tomato greenhouses. Korean J. Appl. Entomol. 52(4), 357-364. Doi: 10.5656/ KSAE.2012.09.0.046
Peel, M.C., L.F. Brian, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4(2), 439-473. Doi: 10.5194/hessd-4-439-2007
Pettis, J.S., E.M. Lichtenberg, M. Andree, J. Stitzinger, and R. Rose. 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, e70182. Doi: 10.1371/journal.pone.0070182
Pignati, W.A., A.N.D.S. Lima, S.S.D. Lara, M.L.M. Correa, J.R. Barbosa, L.H.D.C. Leão, and M.G. Pignatti. 2017. Spatial distribution of pesticide use in Brazil: a strategy for Health Surveillance. Cien. Saude Colet. 22(10), 3281- 3293. Doi: 10.1590/1413-812320172210.17742017
Riedl, H., E. Johansen, L. Brewer, and J. Barbour. 2006. How to reduce bee poisoning from pesticides. Oregon State University; University of Idaho; Washington State University, Corvallis, OR, USA.
Rocha, M.C.L.S.A. 2012. Efeitos dos agrotóxicos sobre as abelhas silvestres no Brasil: proposta metodológica de acompanhamento. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasilia, Brazil
Rodrigues, C.G., A.P. Kruger, W.F. Barbosa, and R.N.C. Guedes. 2016. Leaf fertilizers affect survival and behavior of the neotropical stingless bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera). J. Econ. Entomol. 109(30), 1001-1008. Doi: 10.1093/jee/tow044
Sanchez-Bayo, F. and K. Goka. 2014. Pesticide residues and bees - a risk assessment. PLoS ONE 9, e94482. Doi: 10.1371/journal.pone.0094482
Santos, A.B. and F.S. Nascimento. 2011. Diversidade de visitantes florais e potenciais polinizadores de Solanum lycopersicum (Linnaeus) (Solanales: Solanaceae) em cultivos orgânicos e convencionais. Neotrop. Biol. Conserv. 6a(3), 162-169
Silva-Neto, C.M., F.G. Lima, B.B. Gonçalves, L.L. Bergamini, B.A. Bergamini, M.A.S. Elias, and E.V. Franceschinelli. 2013. Native bees pollinate tomato flowers and increase fruit production. J. Pollinat. Ecol. 11(6), 41-45.
Silva-Neto, C.M., E.V. Franceschinelli, L.L. Bergamini, M.A.S. Elias, J.M. Morais, G.L. Moreira, B.A. and Bergamini. 2016. High species richness of native pollinators in brazilian tomato crops. Braz. J. Biol. 77(3), 506-513. Doi: 10.1590/1519-6984.17515
Siqueira, K.M.N. 2008. Estudo comparativo da polinização de Mangifera indica L. em cultivo convencional e orgânico na região do Vale do Submédio do São Francisco. Rev. Bras. Fruti. 30, 303-310. Doi: 10.1590/ S0100-29452008000200006
Solomon, M.G. and K.J.M. Hooker. 1989. Chemical repellents for reducing pesticide hazard to honeybees in apple orchards. J. Apic. Res. 28(4), 223-227. Doi: 10.1080/00218839.1989.11101188
Spadotto, C.A., M.A.F. Gomes, L.C. Luchini, and M.M. Andrea. 2004. Monitoramento de risco ambiental de agrotóxicos: princípio
Thompson, H.M. 2003. Behavioural effects of pesticides in bees - their potential for use in risk assessment. Ecotoxicol. 12(1-4), 317-330. Doi: 10.1023/A:1022575315413
Tomé, H.V.V., W.F. Barbosa, A.S. Correa, L.M. Gontijo, G.F. Martins, and R.N.C Guedes. 2015. Reduced risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann. Appl. Biol. 167(2), 186-196. Doi: 10.1111/aab.12217
Vale, F.X.R., C.A. Lopes, and M.A.R. Alvarenga. 2013. Doenças fúngicas, bacterianas e causadas por nematoides. pp. 275-326. In: Alvarenga, M.A.R. (ed.). Tomate. Produção em campo, casa de vegetação e hidroponia. Editora Universitária de Lavras, Lavras-MG, Brazil.
Revista Colombiana de Ciencias Hortícolas;Volumen 12, número 2 (Mayo-Agosto 2018)
dc.rights.none.fl_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/7690/7105
reponame:RiUPTC: Repositorio Institucional UPTC
instname:Universidad Pedagógica y Tecnológica de Colombia
instacron:Universidad Pedagógica y Tecnológica de Colombia
instname_str Universidad Pedagógica y Tecnológica de Colombia
instacron_str Universidad Pedagógica y Tecnológica de Colombia
institution Universidad Pedagógica y Tecnológica de Colombia
reponame_str RiUPTC: Repositorio Institucional UPTC
collection RiUPTC: Repositorio Institucional UPTC
_version_ 1841545974440263680
spelling Interaction between biological and chemistry fungicides and tomato pollinatorsInteracción entre fungicidas biológicos y químicos con polinizadores de tomateDe Melo e Silva-Neto, CarlosRibeiro, Anna Clara ChavesGómes, Flaviana LimaNeves, Jordana GuimarãesCampos de Melo, Aniela PilarCalil, Francine NevesAbadia dos Reis, NascimentoFranceschinelli, Edivani VillaronRelación insecto-plantaPolen de abejasPlantas melíferasAgrosaviaBeesPollen loadBacillus subtilisTrifloxystrobinTebuconazoleCompatibility of agrochemicals1 recurso en línea (páginas 425-435).El uso inapropiado de agroquímicos es perjudicial para las abejas que visitan los cultivos agrícolas, lo que reduce la producción por la afectación de la polinización y son pocos los estudios sobre este tema. El objetivo de este estudio fue verificar la incidencia de diferentes fungicidas sobre la visita de abejas en cultivos de tomate y sus efectos sobre la deposición de granos de polen en el estigma, número de semillas, masa y tamaño del fruto. Los experimentos consistieron en 10 tratamientos que fueron: (T1) tratamiento control sin agroquímicos; (T2 y T3) Bacillus subtilis en diferentes frecuencias de aplicación; (T4) hidróxido de cobre; (T5) B. subtilis e hidróxido de cobre; (T6) acibenzolar-S-metilo; (T7) trifloxistrobina+tebuconazol y B. subtilis; (T8) hidróxido de cobre + Mancozeb; (T9) propineb+(-trifloxistrobina+tebuconazol); (T10) trifloxistrobina+tebuconazol)+B. subtilis+hidróxido de cobre. Se determinó la presencia de la marca de polinización en la flor, la carga de polen en los estigmas, el número de semillas por fruto, y el tamaño y masa de los frutos en cada tratamiento. Posteriormente, se estimó la tasa de mortalidad de Melipona quadrifasciata expuesta a cuatro fungicidas (trifloxistrobina+tebuconazol, manganeso y zinc, hidróxido de cobre, Bacillus subtilis). La tasa de mortalidad de M. quadrifasciata en 24 horas de evaluación fue mayor en los tratamientos con hidróxido de cobre y trifloxistrobina+tebuconazol (75 y 50%, respectivamente). La tasa de mortalidad fue menor en los tratamientos con manganeso y zinc, Bacillus subtilis y el tratamiento de control. Los tratamientos con trifloxistrobina y tebuconazol redujeron la presencia de marcas de mordida y granos de polen en el estigma de las flores. Los frutos de los tratamientos control y con B. subtilis e hidróxido de cobre fueron más grandes y tuvieron mayor masa. Por lo tanto, un mayor número de aplicaciones de pesticidas en las plantas de tomate reducen las tasas de visitas de abejas en las flores y en consecuencia, la cantidad de granos de polen depositados en los estigmas afectando también la producción de los frutos.The use of agrochemicals is harmful to bees visiting agricultural crops, reducing production gains from pollination, but the effect of fungicides on these bees is not known. The objective of this study was to verify the effect of bee visitation influenced by different fungicides on the tomato crop and on the deposition of pollen grains on the stigma, number of seeds, mass and fruit size. The experiment was conducted with 10 treatments: (T1) control treatment, without application of agrochemicals; (T2 and T3) Bacillus subtilis in different application frequencies; (T4) copper hydroxide; (T5) B. subtilis and copper hydroxide; (T6) acibenzolar-S-methyl; (T7) (trifloxystrobin+tebuconazole) and B. subtilis; (T8) copper hydroxide+Mancozeb; (T9) propineb+(trifloxystrobin+ tebuconazole); (T10) (trifloxystrobin+tebuconazole)+B. subtilis+copper hydroxide. The presence of the pollination mark on the flower, the pollen load of the stigmas, the number of seeds per fruit, and the size and mass of the fruits were determined in each treatment. Subsequently, the mortality rate of Melipona quadrifasciata (Hymenoptera, Apidae) exposed to four fungicides (trifloxystrobin+tebuconazole; manganese and zinc; copper hydroxide; Bacillus subtilis) was estimated. The mortality rate of M. quadrifasciata over 24 h of evaluation was higher in the treatments with copper hydroxide and trifloxystrobin+tebuconazole (75 and 50%, respectively). The mortality rate was lower in the treatments with manganese and zinc and Bacillus subtilis and in the control treatment. The treatments with trifloxystrobin+tebuconazole reduced the presence of bite marks on the flowers and of pollen grains on the flower stigma. The fruits of the control treatments and treatments with B. subtilis and copper hydroxide were larger and had greater mass, as compared to other agrochemicals. Thus, a higher number of pesticide applications on the tomatoes reduced bee visitation rates to the flowers and, consequently, reduced the amount of pollen grains deposited on the stigmas, also reducing the fruit production.Bibliografía: páginas 434-435Universidad Pedagógica y Tecnológica de Colombia2019-11-06T20:54:53Z2019-11-06T20:54:53Z2018-09-20Artículo de revistahttp://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfSilva Neto, Carlos De Melo E y otros. (2018). Interaction between biological and chemistry fungicides and tomato pollinators. Revista Colombiana de Ciencias Hortícolas, 12(2), 425-435. DOI: http://doi.org/10.17584/rcch.2018v12i2.7690. http://repositorio.uptc.edu.co/handle/001/29192422-37192422-3719http://repositorio.uptc.edu.co/handle/001/291910.17584/rcch.2018v12i2.7690https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/7690/7105reponame:RiUPTC: Repositorio Institucional UPTCinstname:Universidad Pedagógica y Tecnológica de Colombiainstacron:Universidad Pedagógica y Tecnológica de ColombiaengArtz, D.R. and T.L. Pitts-Singer. 2015. Effects of fungicide and adjuvant sprays on nesting behavior in two managed solitary bees, Osmia lignaria and Megachile rotundata. PloS One 10, e0135688. Doi: 10.1371/journal. pone.0135688Barbosa, W.F., G. Smagghe, and R.N.C. Guedes. 2015. Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest. Manag. Sci. 71(8), 1049-1053. Doi: 10.1002/ ps.4025Carvalho, S.M., G.A. Carvalho, C.F. Carvalho, J.S.S. Bueno- Filho, and A.P.M. Baptista. 2009. Toxicidade de acaricidas/ inseticidas empregados na citricultura para a abelha africanizada Apis mellifera L., 1758 (Hymenoptera: Apidae). Arq. Inst. Biol. 76(4), 597-606.Costa, L.M., T.C. Grella, R.A. Barbosa, O. Malaspina, and R.C.F. Nocelli. 2015. Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiol. 62(4), 578-582. Doi: 10.13102/sociobiology. v62i4.792Dafni, A., E. Pacini, and M. Nepi. 2005. Pollen and stigma biology. pp 83-142. In: Dafni, A., P. Kevan, and B. Husband (eds.). Practical pollination biology. Ontario, CanadaDegrandi-Hoffman, G., Y. Chen, E.W. Dejong, M.L. Chambers, and G. Hidalgo. 2015. Effects of oral exposure to fungicides on honey bee nutrition and virus levels. J. Econ. Entomol. 251(6), 1-11. Doi: 10.1093/jee/tov251Embrapa. 2006. Sistema brasileiro de classificação de solos. 2nd ed. Rio de Janeiro, Brazil.Fletcher, M. and L. Barnett. 2003. Bee poisoning incidents in the United Kingdom. Bull. Insectol. 56, 141-145.Franceschinelli, E.V., M.A. Elias, L.L. Bergamini, C.M. Silva- Neto, and E.R. Sujii. 2017. Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil. J. Ins. Cons. 21(4), 715-726. Doi: 10.1007/s10841-017-0015-yFreitas, B.M. and J.N. Pinheiro. 2010. Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecologia 14, 282-298. Doi: 10.4257/oeco.2010.1401.17Gill, R.J. and N.E. Raine. 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28(1), 1459- 1471. Doi: 10.1111/1365-2435.12292Hopwood, J., M. Vaughan, M. Shepherd, D. Biddinger, E. Mader, S.H. Black, and C. Mazzacano. 2012. Are neonicotinoids killing bees? A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for action. Xerces Society for Intervertebrate Conservation, Portland, OR, USA.Jacob, C.R.O., H.M. Soares, S.M. Carvalho, R.C.F. Nocelli, and O. Malaspina. 2013. Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille. Bull. Environ. Contam. Toxicol. 90(1), 69-72. Doi: 10.1007/ s00128-012-0892-4Johnson, R.M., L. DahlGren, B.D. Siegfried, and M.D. Ellis. 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PloS One 8, e54092. Doi: 10.1371/journal.pone.0054092Lima, M.A.P., G.F. Martins, E.E. Oliveira, and R.N.C. Guedes. 2016. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J. Comp. Physiol. A. 202(9-10), 733-747. Doi: 10.1007/ s00359-016-1110-3McFrederick, Q.S., G. Ulrich, R. Mueller, and R. James. 2014. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc. R. Soc. Lond. B. Biol. Sci. 281(1779), 1-8.Morandin, L.A., T.M. Laverty, and P.G. Kevan. 2001a. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J. Econ. Entomol. 94(2), 462-467. Doi: 10.1603/0022-0493-94.2.462Morandin, L.A., T.M. Laverty, and P.G. Kevan. 2001b. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. J. Econ. Entomol. 94(1), 172-179. Doi: 10.1603/0022-0493-94.1.172Mussen, E.C.M., I. Julio, E. Lopez, and C.Y. Peng. 2004. Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ. Entomol. 33(5), 1151-1154. Doi: 10.1603/0046-225X-33.5.1151Ngugi, H.K., S. Dedej, K.S. Delaplane, A.T. Savelle, and H. Scherm. 2005. Effect of flowerapplied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biol Control 33(1), 32-38. Doi: 10.1016/j.biocontrol.2005.01.002Nunes-Silva, P., M. Hnrcir, L. Shipp, V.L. Imperatriz-Fonseca, and P.G. Kevan. 2013. The behaviour of Bombus impatiens (Apidae, Bombini) on tomato (Lycopersicon esculentum Mill., Solanaceae) flowers: pollination and reward perception. J. Pollinat. Ecol. 11(5), 33-40.Park, H.H., J.J. Kim, K.H. Kim, and S.G. Lee. 2013. Dissemination of Bacillus subtilis by using bee-vectoring technology in cherry tomato greenhouses. Korean J. Appl. Entomol. 52(4), 357-364. Doi: 10.5656/ KSAE.2012.09.0.046Peel, M.C., L.F. Brian, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4(2), 439-473. Doi: 10.5194/hessd-4-439-2007Pettis, J.S., E.M. Lichtenberg, M. Andree, J. Stitzinger, and R. Rose. 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, e70182. Doi: 10.1371/journal.pone.0070182Pignati, W.A., A.N.D.S. Lima, S.S.D. Lara, M.L.M. Correa, J.R. Barbosa, L.H.D.C. Leão, and M.G. Pignatti. 2017. Spatial distribution of pesticide use in Brazil: a strategy for Health Surveillance. Cien. Saude Colet. 22(10), 3281- 3293. Doi: 10.1590/1413-812320172210.17742017Riedl, H., E. Johansen, L. Brewer, and J. Barbour. 2006. How to reduce bee poisoning from pesticides. Oregon State University; University of Idaho; Washington State University, Corvallis, OR, USA.Rocha, M.C.L.S.A. 2012. Efeitos dos agrotóxicos sobre as abelhas silvestres no Brasil: proposta metodológica de acompanhamento. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasilia, BrazilRodrigues, C.G., A.P. Kruger, W.F. Barbosa, and R.N.C. Guedes. 2016. Leaf fertilizers affect survival and behavior of the neotropical stingless bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera). J. Econ. Entomol. 109(30), 1001-1008. Doi: 10.1093/jee/tow044Sanchez-Bayo, F. and K. Goka. 2014. Pesticide residues and bees - a risk assessment. PLoS ONE 9, e94482. Doi: 10.1371/journal.pone.0094482Santos, A.B. and F.S. Nascimento. 2011. Diversidade de visitantes florais e potenciais polinizadores de Solanum lycopersicum (Linnaeus) (Solanales: Solanaceae) em cultivos orgânicos e convencionais. Neotrop. Biol. Conserv. 6a(3), 162-169Silva-Neto, C.M., F.G. Lima, B.B. Gonçalves, L.L. Bergamini, B.A. Bergamini, M.A.S. Elias, and E.V. Franceschinelli. 2013. Native bees pollinate tomato flowers and increase fruit production. J. Pollinat. Ecol. 11(6), 41-45.Silva-Neto, C.M., E.V. Franceschinelli, L.L. Bergamini, M.A.S. Elias, J.M. Morais, G.L. Moreira, B.A. and Bergamini. 2016. High species richness of native pollinators in brazilian tomato crops. Braz. J. Biol. 77(3), 506-513. Doi: 10.1590/1519-6984.17515Siqueira, K.M.N. 2008. Estudo comparativo da polinização de Mangifera indica L. em cultivo convencional e orgânico na região do Vale do Submédio do São Francisco. Rev. Bras. Fruti. 30, 303-310. Doi: 10.1590/ S0100-29452008000200006Solomon, M.G. and K.J.M. Hooker. 1989. Chemical repellents for reducing pesticide hazard to honeybees in apple orchards. J. Apic. Res. 28(4), 223-227. Doi: 10.1080/00218839.1989.11101188Spadotto, C.A., M.A.F. Gomes, L.C. Luchini, and M.M. Andrea. 2004. Monitoramento de risco ambiental de agrotóxicos: princípioThompson, H.M. 2003. Behavioural effects of pesticides in bees - their potential for use in risk assessment. Ecotoxicol. 12(1-4), 317-330. Doi: 10.1023/A:1022575315413Tomé, H.V.V., W.F. Barbosa, A.S. Correa, L.M. Gontijo, G.F. Martins, and R.N.C Guedes. 2015. Reduced risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann. Appl. Biol. 167(2), 186-196. Doi: 10.1111/aab.12217Vale, F.X.R., C.A. Lopes, and M.A.R. Alvarenga. 2013. Doenças fúngicas, bacterianas e causadas por nematoides. pp. 275-326. In: Alvarenga, M.A.R. (ed.). Tomate. Produção em campo, casa de vegetação e hidroponia. Editora Universitária de Lavras, Lavras-MG, Brazil.Revista Colombiana de Ciencias Hortícolas;Volumen 12, número 2 (Mayo-Agosto 2018)Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf22023-05-08T14:15:51Z