Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite

The wide industrial use of kaolinite requires that the extraction processes be modeled to determine the appropriate conditions of the benefit. Although classic linear regression models have been used, these have not been appropriate due to the non-compliance with normal distribution for the response...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15360
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424
https://repositorio.uptc.edu.co/handle/001/15360
Palabra clave:
Caolinita
hidrofobicidad
modelos aditivos
modelos de regresión
potencial zeta
additive models, hydrophobicity, kaolinite, regression models, zeta potential
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_f87aadf56f84dd79e358a5940f044b33
oai_identifier_str oai:repositorio.uptc.edu.co:001/15360
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2023-07-192024-07-08T14:24:07Z2024-07-08T14:24:07Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1442410.19053/01217488.v14.n2.2023.14424https://repositorio.uptc.edu.co/handle/001/15360The wide industrial use of kaolinite requires that the extraction processes be modeled to determine the appropriate conditions of the benefit. Although classic linear regression models have been used, these have not been appropriate due to the non-compliance with normal distribution for the response variable. The data analyzed in this study correspond to a kaolinite extraction process by surface physicochemistry carried out in La Unión, Antioquia, Colombia. The response variable was the zeta potential and the explanatory variables were type of collecting solution, concentration, and pH. In this article, the recovery of kaolinite is modeled through generalized additive models, which can choose the statistical distribution and model all the parameters based on explanatory variables. Five distributions were selected for the response variable according to the Akaike information criterion ($AIC$). The model with generalized distribution Beta 2 was the model that presented the best performance according to the metrics used and it was found that the best-operating conditions obtained are the type of oleic acid collector, the concentration of 10 units, and pH 6El amplio uso industrial de la caolinita requiere que los procesos de extracción sean modelados de para determinar las condiciones apropiadas del beneficio. Aunque se han utilizado modelos de regresión lineal clásicos, estos no han sido apropiados debido al incumplimiento de distribución normal para la variable respuesta. Los datos analizados en este estudio corresponden a un proceso de extracción de caolinita mediante fisicoquímica de superficies realizado en La Unión, Antioquia, Colombia. La variable de respuesta fue el potencial zeta y las variables explicativas fueron tipo de solución colectora, concentración y pH. En este artículo se modela la recuperación de caolinita a través de los modelos aditivos generalizados, los cuales permiten elegir la distribución estadística y modelar todos los parámetros en función de variables explicativas. Se seleccionaron cinco distribuciones para la variable respuesta de acuerdo al criterio de información de Akaike ($AIC$). El modelo con distribución generalizada Beta 2 fue el modelo que presentó el mejor desempeño de acuerdo a las métricas utilizadas. A partir de este modelo se encontró que las mejores condiciones de operación obtenidas del análisis de las superficies de respuesta son tipo de colector ácido oleico, concentración 10 unidades y pH de 6application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424/13678Ciencia En Desarrollo; Vol. 14 No. 2 (2023): Vol 14, Núm.2 (2023): Julio-Diciembre; 103-112Ciencia en Desarrollo; Vol. 14 Núm. 2 (2023): Vol 14, Núm.2 (2023): Julio-Diciembre; 103-1122462-76580121-7488Caolinitahidrofobicidadmodelos aditivosmodelos de regresiónpotencial zetaadditive models, hydrophobicity, kaolinite, regression models, zeta potentialGeneralized Additive Models to Optimize the Hydrophobicity Process of KaoliniteModelos Aditivos Generalizados para optimizar el proceso de hidrofobicidad de la caolinitainfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Usuga Manco, Liliana MaríaHernández Barajas, FreddyUsuga Manco, Olga001/15360oai:repositorio.uptc.edu.co:001/153602025-07-18 10:56:33.096metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
dc.title.es-ES.fl_str_mv Modelos Aditivos Generalizados para optimizar el proceso de hidrofobicidad de la caolinita
title Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
spellingShingle Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
Caolinita
hidrofobicidad
modelos aditivos
modelos de regresión
potencial zeta
additive models, hydrophobicity, kaolinite, regression models, zeta potential
title_short Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_full Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_fullStr Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_full_unstemmed Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
title_sort Generalized Additive Models to Optimize the Hydrophobicity Process of Kaolinite
dc.subject.es-ES.fl_str_mv Caolinita
hidrofobicidad
modelos aditivos
modelos de regresión
potencial zeta
topic Caolinita
hidrofobicidad
modelos aditivos
modelos de regresión
potencial zeta
additive models, hydrophobicity, kaolinite, regression models, zeta potential
dc.subject.en-US.fl_str_mv additive models, hydrophobicity, kaolinite, regression models, zeta potential
description The wide industrial use of kaolinite requires that the extraction processes be modeled to determine the appropriate conditions of the benefit. Although classic linear regression models have been used, these have not been appropriate due to the non-compliance with normal distribution for the response variable. The data analyzed in this study correspond to a kaolinite extraction process by surface physicochemistry carried out in La Unión, Antioquia, Colombia. The response variable was the zeta potential and the explanatory variables were type of collecting solution, concentration, and pH. In this article, the recovery of kaolinite is modeled through generalized additive models, which can choose the statistical distribution and model all the parameters based on explanatory variables. Five distributions were selected for the response variable according to the Akaike information criterion ($AIC$). The model with generalized distribution Beta 2 was the model that presented the best performance according to the metrics used and it was found that the best-operating conditions obtained are the type of oleic acid collector, the concentration of 10 units, and pH 6
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:07Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:07Z
dc.date.none.fl_str_mv 2023-07-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424
10.19053/01217488.v14.n2.2023.14424
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15360
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424
https://repositorio.uptc.edu.co/handle/001/15360
identifier_str_mv 10.19053/01217488.v14.n2.2023.14424
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/14424/13678
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 14 No. 2 (2023): Vol 14, Núm.2 (2023): Julio-Diciembre; 103-112
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 14 Núm. 2 (2023): Vol 14, Núm.2 (2023): Julio-Diciembre; 103-112
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633837199458304