Identification of a synchronous generator parameters using recursive least squares and Kalman filter
The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman fi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15303
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779
https://repositorio.uptc.edu.co/handle/001/15303
- Palabra clave:
- Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
Identification, Dynamic Model, Kalman Filter, Recursive least squares.
- Rights
- License
- Derechos de autor 2021 CIENCIA EN DESARROLLO
id |
REPOUPTC2_f0a532458f0d1009d123f60a68988ea3 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/15303 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2021-01-082024-07-08T14:24:02Z2024-07-08T14:24:02Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1177910.19053/01217488.v12.n1.2021.11779https://repositorio.uptc.edu.co/handle/001/15303The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman filter is better than recursive least squares. A linear model of the machine is used in order to considerate the currents and their derivatives as the system inputs while the three-phase voltage signals are the outputs. Furthermore two experiments with simulated and measured data were carried out, three operating scenarios and two variations of the algorithms respectively were considered. Despite the great similarity and good performance of both methods, it was found that Kalman filter slightly exceeded least squares due to the fact that it presented smaller oscillations in the estimated value of the parameters for any operating condition.En este articulo se presenta la comparación entre mínimos cuadrados recursivos (RLS) y filtro de Kalman (KF), ambos métodos fueron adecuados para estimar seis parámetros de una máquina síncrona. El trabajo se centró en encontrar las condiciones de funcionamiento en las que la calidad de la identificación lograda con el filtro de Kalman es mejor que los mínimos cuadrados recursivos. Se utiliza un modelo lineal de la máquina para considerar las corrientes y sus derivadas como entradas del sistema, mientras que las señales de tensión trifásica son las salidas. Además, se llevaron a cabo dos experimentos con datos simulados y medidos, se consideraron tres escenarios operativos y dos variaciones de los algoritmos respectivamente. A pesar de la gran similitud y buen desempeño de ambos métodos, se encontró que el filtro de Kalman excedía levemente los mínimos cuadrados debido a que presentaba menores oscilaciones en el valor estimado de los parámetros para cualquier condición de operación.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779/10690Derechos de autor 2021 CIENCIA EN DESARROLLOhttp://purl.org/coar/access_right/c_abf2Ciencia En Desarrollo; Vol. 12 No. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21Ciencia en Desarrollo; Vol. 12 Núm. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-212462-76580121-7488Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.Identification, Dynamic Model, Kalman Filter, Recursive least squares.Identification of a synchronous generator parameters using recursive least squares and Kalman filterIdentificación de los parámetros de un generador síncrono mediante mínimos cuadrados recursivos y filtro de Kalmaninfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Bravo Montenegro, Diego AlbertoRengifo, Carlos FelipeGiron, CristianPalechor, Jhon001/15303oai:repositorio.uptc.edu.co:001/153032025-07-18 10:56:40.28metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter |
dc.title.es-ES.fl_str_mv |
Identificación de los parámetros de un generador síncrono mediante mínimos cuadrados recursivos y filtro de Kalman |
title |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter |
spellingShingle |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos. Identification, Dynamic Model, Kalman Filter, Recursive least squares. |
title_short |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter |
title_full |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter |
title_fullStr |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter |
title_full_unstemmed |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter |
title_sort |
Identification of a synchronous generator parameters using recursive least squares and Kalman filter |
dc.subject.es-ES.fl_str_mv |
Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos. |
topic |
Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos. Identification, Dynamic Model, Kalman Filter, Recursive least squares. |
dc.subject.en-US.fl_str_mv |
Identification, Dynamic Model, Kalman Filter, Recursive least squares. |
description |
The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman filter is better than recursive least squares. A linear model of the machine is used in order to considerate the currents and their derivatives as the system inputs while the three-phase voltage signals are the outputs. Furthermore two experiments with simulated and measured data were carried out, three operating scenarios and two variations of the algorithms respectively were considered. Despite the great similarity and good performance of both methods, it was found that Kalman filter slightly exceeded least squares due to the fact that it presented smaller oscillations in the estimated value of the parameters for any operating condition. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T14:24:02Z |
dc.date.available.none.fl_str_mv |
2024-07-08T14:24:02Z |
dc.date.none.fl_str_mv |
2021-01-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779 10.19053/01217488.v12.n1.2021.11779 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/15303 |
url |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779 https://repositorio.uptc.edu.co/handle/001/15303 |
identifier_str_mv |
10.19053/01217488.v12.n1.2021.11779 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779/10690 |
dc.rights.es-ES.fl_str_mv |
Derechos de autor 2021 CIENCIA EN DESARROLLO |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos de autor 2021 CIENCIA EN DESARROLLO http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Ciencia En Desarrollo; Vol. 12 No. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21 |
dc.source.es-ES.fl_str_mv |
Ciencia en Desarrollo; Vol. 12 Núm. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21 |
dc.source.none.fl_str_mv |
2462-7658 0121-7488 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633863206240256 |