Identification of a synchronous generator parameters using recursive least squares and Kalman filter

The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman fi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15303
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779
https://repositorio.uptc.edu.co/handle/001/15303
Palabra clave:
Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
Identification, Dynamic Model, Kalman Filter, Recursive least squares.
Rights
License
Derechos de autor 2021 CIENCIA EN DESARROLLO
id REPOUPTC2_f0a532458f0d1009d123f60a68988ea3
oai_identifier_str oai:repositorio.uptc.edu.co:001/15303
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2021-01-082024-07-08T14:24:02Z2024-07-08T14:24:02Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1177910.19053/01217488.v12.n1.2021.11779https://repositorio.uptc.edu.co/handle/001/15303The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman filter is better than recursive least squares. A linear model of the machine is used in order to considerate the currents and their derivatives as the system inputs while the three-phase voltage signals are the outputs. Furthermore two experiments with simulated and measured data were carried out, three operating scenarios and two variations of the algorithms respectively were considered. Despite the great similarity and good performance of both methods, it was found that Kalman filter slightly exceeded least squares due to the fact that it presented smaller oscillations in the estimated value of the parameters for any operating condition.En este articulo se presenta la comparación entre mínimos cuadrados recursivos (RLS) y filtro de Kalman (KF), ambos métodos fueron adecuados para estimar seis parámetros de una máquina síncrona. El trabajo se centró en encontrar las condiciones de funcionamiento en las que la calidad de la identificación lograda con el filtro de Kalman es mejor que los mínimos cuadrados recursivos. Se utiliza un modelo lineal de la máquina para considerar las corrientes y sus derivadas como entradas del sistema, mientras que las señales de tensión trifásica son las salidas. Además, se llevaron a cabo dos experimentos con datos simulados y medidos, se consideraron tres escenarios operativos y dos variaciones de los algoritmos respectivamente. A pesar de la gran similitud y buen desempeño de ambos métodos, se encontró que el filtro de Kalman excedía levemente los mínimos cuadrados debido a que presentaba menores oscilaciones en el valor estimado de los parámetros para cualquier condición de operación.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779/10690Derechos de autor 2021 CIENCIA EN DESARROLLOhttp://purl.org/coar/access_right/c_abf2Ciencia En Desarrollo; Vol. 12 No. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21Ciencia en Desarrollo; Vol. 12 Núm. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-212462-76580121-7488Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.Identification, Dynamic Model, Kalman Filter, Recursive least squares.Identification of a synchronous generator parameters using recursive least squares and Kalman filterIdentificación de los parámetros de un generador síncrono mediante mínimos cuadrados recursivos y filtro de Kalmaninfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Bravo Montenegro, Diego AlbertoRengifo, Carlos FelipeGiron, CristianPalechor, Jhon001/15303oai:repositorio.uptc.edu.co:001/153032025-07-18 10:56:40.28metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Identification of a synchronous generator parameters using recursive least squares and Kalman filter
dc.title.es-ES.fl_str_mv Identificación de los parámetros de un generador síncrono mediante mínimos cuadrados recursivos y filtro de Kalman
title Identification of a synchronous generator parameters using recursive least squares and Kalman filter
spellingShingle Identification of a synchronous generator parameters using recursive least squares and Kalman filter
Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
Identification, Dynamic Model, Kalman Filter, Recursive least squares.
title_short Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_full Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_fullStr Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_full_unstemmed Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_sort Identification of a synchronous generator parameters using recursive least squares and Kalman filter
dc.subject.es-ES.fl_str_mv Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
topic Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
Identification, Dynamic Model, Kalman Filter, Recursive least squares.
dc.subject.en-US.fl_str_mv Identification, Dynamic Model, Kalman Filter, Recursive least squares.
description The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman filter is better than recursive least squares. A linear model of the machine is used in order to considerate the currents and their derivatives as the system inputs while the three-phase voltage signals are the outputs. Furthermore two experiments with simulated and measured data were carried out, three operating scenarios and two variations of the algorithms respectively were considered. Despite the great similarity and good performance of both methods, it was found that Kalman filter slightly exceeded least squares due to the fact that it presented smaller oscillations in the estimated value of the parameters for any operating condition.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:02Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:02Z
dc.date.none.fl_str_mv 2021-01-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779
10.19053/01217488.v12.n1.2021.11779
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15303
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779
https://repositorio.uptc.edu.co/handle/001/15303
identifier_str_mv 10.19053/01217488.v12.n1.2021.11779
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779/10690
dc.rights.es-ES.fl_str_mv Derechos de autor 2021 CIENCIA EN DESARROLLO
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2021 CIENCIA EN DESARROLLO
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 12 No. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 12 Núm. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633863206240256