Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure

This work analyzes methods and algorithms for predicting the behavior of electricity consumption based on neural networks using data obtained from the Advanced Measurement Infrastructure (AMI) of an educational institution. Also, a contrast between the use of conventional neural networks (ANN), wave...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14308
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772
https://repositorio.uptc.edu.co/handle/001/14308
Palabra clave:
AMI
medición inteligente
P1P
predicción de consumo eléctrico
WNN
AMI
electricity consumption prediction
P1P
smart metering
WNN
Rights
License
Copyright (c) 2021 Pablo Urgilés, Juan Inga-Ortega, Arturo Peralta, Andrés Ortega
id REPOUPTC2_eb7d24b6103734177df56e4d6b49cd93
oai_identifier_str oai:repositorio.uptc.edu.co:001/14308
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
dc.title.es-ES.fl_str_mv Predicción de perfiles de consumo eléctrico usando polinomios potenciales de grado uno y redes neuronales artificiales en la infraestructura de medición inteligente
title Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
spellingShingle Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
AMI
medición inteligente
P1P
predicción de consumo eléctrico
WNN
AMI
electricity consumption prediction
P1P
smart metering
WNN
title_short Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_full Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_fullStr Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_full_unstemmed Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
title_sort Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure
dc.subject.es-ES.fl_str_mv AMI
medición inteligente
P1P
predicción de consumo eléctrico
WNN
topic AMI
medición inteligente
P1P
predicción de consumo eléctrico
WNN
AMI
electricity consumption prediction
P1P
smart metering
WNN
dc.subject.en-US.fl_str_mv AMI
electricity consumption prediction
P1P
smart metering
WNN
description This work analyzes methods and algorithms for predicting the behavior of electricity consumption based on neural networks using data obtained from the Advanced Measurement Infrastructure (AMI) of an educational institution. Also, a contrast between the use of conventional neural networks (ANN), wavelet-based neural networks (WNN) and potential polynomials of degree one (P1P) has been performed. The correlation of each prediction method is analyzed, as well as the behavior of the Mean Square Error (MSE), to finally establish if there is an imbalance in the computational cost through the Big-O analysis and the executing time. The quantitative results of the MSE are below 0.05% for ANN predictions and they use a high computational cost. For P1P, errors around 1.2% are presented, showing as a low computational consumption prediction method but mainly applicable for a short-term analysis. This work is given in response to the need to establish a platform to take advantage of the smart metering structure through the prediction of electricity consumption profile, with the objective of developing a plan for maintenance and management of electricity demand to reduce operating costs from the final consumer to the distribution network operator. For the analysis of projections on the electrical load profile, the statistical characteristics of the consumption are considered to select the prediction algorithms according to the number of days to be projected using data from any of the smart meters, which can be monitored in an electrical network oriented to Smart Grids.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:57Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:57Z
dc.date.none.fl_str_mv 2021-06-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a221
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772
10.19053/01211129.v30.n56.2021.12772
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14308
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772
https://repositorio.uptc.edu.co/handle/001/14308
identifier_str_mv 10.19053/01211129.v30.n56.2021.12772
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772/10919
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772/10945
dc.rights.en-US.fl_str_mv Copyright (c) 2021 Pablo Urgilés, Juan Inga-Ortega, Arturo Peralta, Andrés Ortega
http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf138
rights_invalid_str_mv Copyright (c) 2021 Pablo Urgilés, Juan Inga-Ortega, Arturo Peralta, Andrés Ortega
http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf138
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 No. 56 (2021): April-June 2021 (Continuous Publication); e12772
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 Núm. 56 (2021): Abril-Junio 2021 (Publicación Continua); e12772
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633819265662976
spelling 2021-06-022024-07-05T19:11:57Z2024-07-05T19:11:57Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1277210.19053/01211129.v30.n56.2021.12772https://repositorio.uptc.edu.co/handle/001/14308This work analyzes methods and algorithms for predicting the behavior of electricity consumption based on neural networks using data obtained from the Advanced Measurement Infrastructure (AMI) of an educational institution. Also, a contrast between the use of conventional neural networks (ANN), wavelet-based neural networks (WNN) and potential polynomials of degree one (P1P) has been performed. The correlation of each prediction method is analyzed, as well as the behavior of the Mean Square Error (MSE), to finally establish if there is an imbalance in the computational cost through the Big-O analysis and the executing time. The quantitative results of the MSE are below 0.05% for ANN predictions and they use a high computational cost. For P1P, errors around 1.2% are presented, showing as a low computational consumption prediction method but mainly applicable for a short-term analysis. This work is given in response to the need to establish a platform to take advantage of the smart metering structure through the prediction of electricity consumption profile, with the objective of developing a plan for maintenance and management of electricity demand to reduce operating costs from the final consumer to the distribution network operator. For the analysis of projections on the electrical load profile, the statistical characteristics of the consumption are considered to select the prediction algorithms according to the number of days to be projected using data from any of the smart meters, which can be monitored in an electrical network oriented to Smart Grids.Este trabajo analiza métodos y algoritmos de predicción del comportamiento de consumo eléctrico basados en redes neuronales, usando datos obtenidos de la infraestructura de medición avanzada (AMI) de una institución educativa. También, se ha realizado un contraste entre el uso de redes neuronales convencionales (ANN), redes neuronales basadas en wavelets (WNN) y los polinomios potenciales de grado uno (P1P). Se analiza la correlación de cada método de predicción, así como el comportamiento del error cuadrático medio (MSE) para finalmente establecer si existe un desbalance en el coste computacional a través del análisis de Big-O y el tiempo de ejecución. Los resultados cuantitativos del error MSE están por debajo del 0,05% para predicciones con ANN y usan un alto costo computacional. Para P1P se presentan errores alrededor del 1,2% mostrando como método de predicción de bajo consumo computacional pero aplicable de forma principal para un análisis a corto plazo. Este trabajo se da en respuesta a la necesidad de establecer una plataforma que permita aprovechar la estructura de medición inteligente, a través de la predicción de perfil de consumo eléctrico con el objetivo de elaborar una planificación de mantenimiento y gestión de la demanda eléctrica para reducir costos de operación desde el consumidor final hasta el gestor de la distribución de energía eléctrica. Para el análisis de las proyecciones sobre el perfil de carga eléctrica se consideran las características estadísticas del consumo para seleccionar los algoritmos de predicción según la cantidad de días a proyectar, usando los datos de cualquiera de los medidores inteligentes, que pueden ser monitoreados en una red eléctrica orientada a las Smart Grids.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772/10919https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12772/10945Copyright (c) 2021 Pablo Urgilés, Juan Inga-Ortega, Arturo Peralta, Andrés Ortegahttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf138http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 56 (2021): April-June 2021 (Continuous Publication); e12772Revista Facultad de Ingeniería; Vol. 30 Núm. 56 (2021): Abril-Junio 2021 (Publicación Continua); e127722357-53280121-1129AMImedición inteligenteP1Ppredicción de consumo eléctricoWNNAMIelectricity consumption predictionP1Psmart meteringWNNPrediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering InfrastructurePredicción de perfiles de consumo eléctrico usando polinomios potenciales de grado uno y redes neuronales artificiales en la infraestructura de medición inteligenteinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a221http://purl.org/coar/version/c_970fb48d4fbd8a85Urgilés, PabloInga-Ortega, JuanPeralta, ArturoOrtega, Andrés001/14308oai:repositorio.uptc.edu.co:001/143082025-07-18 11:53:37.453metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co