Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils

Chemical analysis in soils are essential for decision making in agriculture.Currently, the aim is to use non-destructive, fast, and precise techniques that allow for results to be obtaining easily, such as NIRS near infrared spectroscopy. The objective was to generate prediction equations for Organi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15339
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942
https://repositorio.uptc.edu.co/handle/001/15339
Palabra clave:
machine learning
transformaciones
métodos ´ópticos
análisis químicos
regresiones parciales
chemical analysis
machine learning
optical methods
partial regressions
transformations
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_e8bec2e90eba86eb85fa4e7b58a914b4
oai_identifier_str oai:repositorio.uptc.edu.co:001/15339
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2023-03-022024-07-08T14:24:05Z2024-07-08T14:24:05Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1394210.19053/01217488.v14.n1.2023.13942https://repositorio.uptc.edu.co/handle/001/15339Chemical analysis in soils are essential for decision making in agriculture.Currently, the aim is to use non-destructive, fast, and precise techniques that allow for results to be obtaining easily, such as NIRS near infrared spectroscopy. The objective was to generate prediction equations for Organic Matter (MO) and total Nitrogen (total N), by using NIRS spectra. 459 soil samples were processed by wet chemistry and by NIRS and various data transformations analyzed by partial least squares were used. In the selection, the values of the coefficient of determination (R2), the root mean square error of prediction (RMSEP) and the predictive residual deviation (RPD). The best model for MO was without transformation with absorbance (R2=0.90, RMSEP=0.29 and RPD=1.3) and for total Nitrogen with transformation of 1a derivative Savitzky-Golay (R2=0.84, RMSEP=0.09 and RPD=2.5). This indicates that the absorbance values of the NIRS spectra can be used to predict the OM and N values of the soil, using partial least squares models.Los análisis del suelo son fundamentales para la toma de decisiones en agricultura. Estos análisis pueden ser obtenidos por técnicas no destructivas, rápidas y precisas como lo es la espectroscopía de infrarrojo cercano NIRS. El objetivo fue generar ecuaciones de predicción de la Materia Orgánica (MO) y Nitrógeno total (N total), mediante el uso de espectros del NIRS. Se procesaron 459 muestras de suelo por química húmeda y por NIRS y se utilizaron diversas transformaciones de datos analizadas por mínimos cuadrados parciales. En la selección se tuvieron en cuenta los valores del coeficiente de determinación (R2), de la raiz del error cuadrático medio de predicción (RMSEP) y la desviación residual predictiva (RPD). El mejor modelo paraMO correspondió al modelo de aobsorbancia sin transformación (R2=0.90, RMSEP=0.29 y RPD=1.3) y para el nitrógeno total el mejor modelo fue la transformación de la 1a derivada de Savitzky-Golay (R2=0.84, RMSEP=0.09 y RPD=2.5). Lo anterior indica que se pueden utilizar los valores de absorbancia de los espectros del NIRS para predecir los valores de MO y N del suelo, utilizando modelos de mínimos cuadrados parciales.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942/13484Ciencia En Desarrollo; Vol. 14 No. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-118Ciencia en Desarrollo; Vol. 14 Núm. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-1182462-76580121-7488machine learningtransformacionesmétodos ´ópticosanálisis químicosregresiones parcialeschemical analysismachine learningoptical methodspartial regressionstransformationsUse of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of SoilsEspectroscopía de infrarrojo cercano para la determinación de materia orgánica y nitrógeno total del sueloinfo:eu-repo/semantics/articletextohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Ortega Monsalve, ManuelaCerón-Muñoz, Mario FernandoMedina-Sierra, Marisol001/15339oai:repositorio.uptc.edu.co:001/153392025-07-18 10:56:40.249metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
dc.title.es-ES.fl_str_mv Espectroscopía de infrarrojo cercano para la determinación de materia orgánica y nitrógeno total del suelo
title Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
spellingShingle Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
machine learning
transformaciones
métodos ´ópticos
análisis químicos
regresiones parciales
chemical analysis
machine learning
optical methods
partial regressions
transformations
title_short Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
title_full Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
title_fullStr Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
title_full_unstemmed Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
title_sort Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
dc.subject.es-ES.fl_str_mv machine learning
transformaciones
métodos ´ópticos
análisis químicos
regresiones parciales
topic machine learning
transformaciones
métodos ´ópticos
análisis químicos
regresiones parciales
chemical analysis
machine learning
optical methods
partial regressions
transformations
dc.subject.en-US.fl_str_mv chemical analysis
machine learning
optical methods
partial regressions
transformations
description Chemical analysis in soils are essential for decision making in agriculture.Currently, the aim is to use non-destructive, fast, and precise techniques that allow for results to be obtaining easily, such as NIRS near infrared spectroscopy. The objective was to generate prediction equations for Organic Matter (MO) and total Nitrogen (total N), by using NIRS spectra. 459 soil samples were processed by wet chemistry and by NIRS and various data transformations analyzed by partial least squares were used. In the selection, the values of the coefficient of determination (R2), the root mean square error of prediction (RMSEP) and the predictive residual deviation (RPD). The best model for MO was without transformation with absorbance (R2=0.90, RMSEP=0.29 and RPD=1.3) and for total Nitrogen with transformation of 1a derivative Savitzky-Golay (R2=0.84, RMSEP=0.09 and RPD=2.5). This indicates that the absorbance values of the NIRS spectra can be used to predict the OM and N values of the soil, using partial least squares models.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:05Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:05Z
dc.date.none.fl_str_mv 2023-03-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.es-ES.fl_str_mv texto
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942
10.19053/01217488.v14.n1.2023.13942
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15339
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942
https://repositorio.uptc.edu.co/handle/001/15339
identifier_str_mv 10.19053/01217488.v14.n1.2023.13942
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942/13484
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 14 No. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-118
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 14 Núm. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-118
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633857963360256