Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils
Chemical analysis in soils are essential for decision making in agriculture.Currently, the aim is to use non-destructive, fast, and precise techniques that allow for results to be obtaining easily, such as NIRS near infrared spectroscopy. The objective was to generate prediction equations for Organi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15339
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942
https://repositorio.uptc.edu.co/handle/001/15339
- Palabra clave:
- machine learning
transformaciones
métodos ´ópticos
análisis químicos
regresiones parciales
chemical analysis
machine learning
optical methods
partial regressions
transformations
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUPTC2_e8bec2e90eba86eb85fa4e7b58a914b4 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/15339 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2023-03-022024-07-08T14:24:05Z2024-07-08T14:24:05Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1394210.19053/01217488.v14.n1.2023.13942https://repositorio.uptc.edu.co/handle/001/15339Chemical analysis in soils are essential for decision making in agriculture.Currently, the aim is to use non-destructive, fast, and precise techniques that allow for results to be obtaining easily, such as NIRS near infrared spectroscopy. The objective was to generate prediction equations for Organic Matter (MO) and total Nitrogen (total N), by using NIRS spectra. 459 soil samples were processed by wet chemistry and by NIRS and various data transformations analyzed by partial least squares were used. In the selection, the values of the coefficient of determination (R2), the root mean square error of prediction (RMSEP) and the predictive residual deviation (RPD). The best model for MO was without transformation with absorbance (R2=0.90, RMSEP=0.29 and RPD=1.3) and for total Nitrogen with transformation of 1a derivative Savitzky-Golay (R2=0.84, RMSEP=0.09 and RPD=2.5). This indicates that the absorbance values of the NIRS spectra can be used to predict the OM and N values of the soil, using partial least squares models.Los análisis del suelo son fundamentales para la toma de decisiones en agricultura. Estos análisis pueden ser obtenidos por técnicas no destructivas, rápidas y precisas como lo es la espectroscopía de infrarrojo cercano NIRS. El objetivo fue generar ecuaciones de predicción de la Materia Orgánica (MO) y Nitrógeno total (N total), mediante el uso de espectros del NIRS. Se procesaron 459 muestras de suelo por química húmeda y por NIRS y se utilizaron diversas transformaciones de datos analizadas por mínimos cuadrados parciales. En la selección se tuvieron en cuenta los valores del coeficiente de determinación (R2), de la raiz del error cuadrático medio de predicción (RMSEP) y la desviación residual predictiva (RPD). El mejor modelo paraMO correspondió al modelo de aobsorbancia sin transformación (R2=0.90, RMSEP=0.29 y RPD=1.3) y para el nitrógeno total el mejor modelo fue la transformación de la 1a derivada de Savitzky-Golay (R2=0.84, RMSEP=0.09 y RPD=2.5). Lo anterior indica que se pueden utilizar los valores de absorbancia de los espectros del NIRS para predecir los valores de MO y N del suelo, utilizando modelos de mínimos cuadrados parciales.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942/13484Ciencia En Desarrollo; Vol. 14 No. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-118Ciencia en Desarrollo; Vol. 14 Núm. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-1182462-76580121-7488machine learningtransformacionesmétodos ´ópticosanálisis químicosregresiones parcialeschemical analysismachine learningoptical methodspartial regressionstransformationsUse of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of SoilsEspectroscopía de infrarrojo cercano para la determinación de materia orgánica y nitrógeno total del sueloinfo:eu-repo/semantics/articletextohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Ortega Monsalve, ManuelaCerón-Muñoz, Mario FernandoMedina-Sierra, Marisol001/15339oai:repositorio.uptc.edu.co:001/153392025-07-18 10:56:40.249metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils |
dc.title.es-ES.fl_str_mv |
Espectroscopía de infrarrojo cercano para la determinación de materia orgánica y nitrógeno total del suelo |
title |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils |
spellingShingle |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils machine learning transformaciones métodos ´ópticos análisis químicos regresiones parciales chemical analysis machine learning optical methods partial regressions transformations |
title_short |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils |
title_full |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils |
title_fullStr |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils |
title_full_unstemmed |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils |
title_sort |
Use of Near Infrared Spectroscopy for the Determination of Organic Matter and Total Nitrogen of Soils |
dc.subject.es-ES.fl_str_mv |
machine learning transformaciones métodos ´ópticos análisis químicos regresiones parciales |
topic |
machine learning transformaciones métodos ´ópticos análisis químicos regresiones parciales chemical analysis machine learning optical methods partial regressions transformations |
dc.subject.en-US.fl_str_mv |
chemical analysis machine learning optical methods partial regressions transformations |
description |
Chemical analysis in soils are essential for decision making in agriculture.Currently, the aim is to use non-destructive, fast, and precise techniques that allow for results to be obtaining easily, such as NIRS near infrared spectroscopy. The objective was to generate prediction equations for Organic Matter (MO) and total Nitrogen (total N), by using NIRS spectra. 459 soil samples were processed by wet chemistry and by NIRS and various data transformations analyzed by partial least squares were used. In the selection, the values of the coefficient of determination (R2), the root mean square error of prediction (RMSEP) and the predictive residual deviation (RPD). The best model for MO was without transformation with absorbance (R2=0.90, RMSEP=0.29 and RPD=1.3) and for total Nitrogen with transformation of 1a derivative Savitzky-Golay (R2=0.84, RMSEP=0.09 and RPD=2.5). This indicates that the absorbance values of the NIRS spectra can be used to predict the OM and N values of the soil, using partial least squares models. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T14:24:05Z |
dc.date.available.none.fl_str_mv |
2024-07-08T14:24:05Z |
dc.date.none.fl_str_mv |
2023-03-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.es-ES.fl_str_mv |
texto |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942 10.19053/01217488.v14.n1.2023.13942 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/15339 |
url |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942 https://repositorio.uptc.edu.co/handle/001/15339 |
identifier_str_mv |
10.19053/01217488.v14.n1.2023.13942 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13942/13484 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Ciencia En Desarrollo; Vol. 14 No. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-118 |
dc.source.es-ES.fl_str_mv |
Ciencia en Desarrollo; Vol. 14 Núm. 1 (2023): Vol 14, Núm.1 (2023): Enero-Junio; 111-118 |
dc.source.none.fl_str_mv |
2462-7658 0121-7488 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633857963360256 |