Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión
Páginas 200-209.
- Autores:
-
Monsalve Camacho, Oscar Iván
Gutiérrez Díaz, Joan Sebastián
Cardona, William Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/1808
- Acceso en línea:
- https://repositorio.uptc.edu.co/handle/001/1808
- Palabra clave:
- Residuos orgánicos
Fertilidad del suelo
Residuos orgánicos como fertilizantes
Enmiendas orgánicas
Aplicación de abonos
Enmiendas del suelo
Abonos orgánicos
Lixiviación
Abonos nitrogenados
Agrosavia
- Rights
- openAccess
- License
- Copyright (c) 2017 Revista Colombiana de Ciencias Hortícolas
id |
REPOUPTC2_e2f3dea3e596dcce3a6f484214975ddd |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/1808 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión |
dc.title.alternative.eng.fl_str_mv |
Factors involved in the process of nitrogen mineralization when organic amendments are added to a soil. A review |
title |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión |
spellingShingle |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión Residuos orgánicos Fertilidad del suelo Residuos orgánicos como fertilizantes Enmiendas orgánicas Aplicación de abonos Enmiendas del suelo Abonos orgánicos Lixiviación Abonos nitrogenados Agrosavia |
title_short |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión |
title_full |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión |
title_fullStr |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión |
title_full_unstemmed |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión |
title_sort |
Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión |
dc.creator.fl_str_mv |
Monsalve Camacho, Oscar Iván Gutiérrez Díaz, Joan Sebastián Cardona, William Andrés |
dc.contributor.author.spa.fl_str_mv |
Monsalve Camacho, Oscar Iván Gutiérrez Díaz, Joan Sebastián Cardona, William Andrés |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.subject.spa.fl_str_mv |
Residuos orgánicos Fertilidad del suelo Residuos orgánicos como fertilizantes Enmiendas orgánicas Aplicación de abonos Enmiendas del suelo Abonos orgánicos Lixiviación Abonos nitrogenados |
topic |
Residuos orgánicos Fertilidad del suelo Residuos orgánicos como fertilizantes Enmiendas orgánicas Aplicación de abonos Enmiendas del suelo Abonos orgánicos Lixiviación Abonos nitrogenados Agrosavia |
dc.subject.armarc.spa.fl_str_mv |
Agrosavia |
description |
Páginas 200-209. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-08-02T22:45:57Z |
dc.date.available.none.fl_str_mv |
2017-08-02T22:45:57Z |
dc.date.issued.none.fl_str_mv |
2017-06-13 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Monsalve Camacho, O. I., Gutiérrez Díaz, J. S. y Cardona, W. A. (2017), Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Revista Colombiana de Ciencias Hortícolas, 11(1), 200-209. DOI: https://doi.org/10.17584/rcch.2017v11i1.5663 . http://repositorio.uptc.edu.co/handle/001/1808 |
dc.identifier.issn.none.fl_str_mv |
2011-2173 En Línea: 2422-3719 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/1808 |
dc.identifier.doi.spa.fl_str_mv |
10.17584/rcch.2017v11i1.5663 |
identifier_str_mv |
Monsalve Camacho, O. I., Gutiérrez Díaz, J. S. y Cardona, W. A. (2017), Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Revista Colombiana de Ciencias Hortícolas, 11(1), 200-209. DOI: https://doi.org/10.17584/rcch.2017v11i1.5663 . http://repositorio.uptc.edu.co/handle/001/1808 2011-2173 En Línea: 2422-3719 10.17584/rcch.2017v11i1.5663 |
url |
https://repositorio.uptc.edu.co/handle/001/1808 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbasi, M.K. y A. Khizar. 2012. Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic-inorganic N sources and their effect on growth and N-uptake in maize. Ecol. Eng. 39, 123-132. Doi: 10.1016/j.ecoleng.2011.12.027 Abbasi, M.K., M. Hina, A. Khalique y S.R. Khan. 2007. Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions. Comm. Soil Sci. Plant Anal. 38, 1691-1711. Doi: 10.1080/00103620701435464 Abbasi, M.K., Z. Shah y W.A. Adams. 2001. Mineralization and nitrification potentials of grassland soils at shallow depth during laboratory incubation. J. Plant Nutr. Soil Sci. 164, 407-502. Doi: 10.1002/1522-2624(200110)164:5<497::AID-JPLN497>3.0.CO;2-E Al-Busaidi, K.T.S., A. Buerkert y R.G. Joergensen. 2014. Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils. J. Arid Environ. 100-101, 106-110. Doi: 10.1016/j. jaridenv.2013.10.013 Ando, H., R.C. Aragones y G. Wada. 1992. Mineralization pattern of soil organic N of several soils in the tropics. Soil Sci. Plant Nutr. 38, 227-234. Doi: 10.1080/00380768.1992.10416485 Antil, R., A. Bar-Tal, P. Fine y A. Hadas. 2011. predicting nitrogen and carbon mineralization of composted manure and sewage sludge in soil. Compost Sci. Util. 19, 33-43. Doi: 10.1080/1065657X.2011.10736974 Aoyama, M. y T. Nozawa. 1993. Microbial biomass nitrogen and mineralization-immobilization processes of nitrogen in soils incubated with various organic materials. Soil Sci. Plant Nutr. 39, 23-32. Doi: 10.1080/00380768.1993.10416971 Azcón-Bieto, J. y M. Talón.2008. Fundamentos de fisiología vegetal. 2ª ed. McGraw-Hill - Interamericana y UBE Editores, Madrid, España. Azeez, J.O. y W. Van Averbeke. 2010. Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Biores. Technol. 101(14), 5645- 5651. Doi: 10.1016/j.biortech.2010.01.119 Blumenthal, D.M., N.R. Jordany M.P. Russelle. 2003. Soil carbon addition controls weeds and facilitates prairie restoration. Ecol. Appl. 13, 605-615. Doi: 10.1890/1051-0761(2003)013[0605:SCACWA]2.0. CO;2 Börjesson, T., B. Stenberg, B. Lindén y A. Jonsson. 1999. NIR spectroscopy, mineral nitrogen analysis and soil incubations for the prediction of crop uptake of nitrogen during the growing season. Plant Soil 214, 75-83. Doi: 10.1023/A:1004775524189 Cabrera, M.L., D.E. Kissel y M.F. Vigil. 2005. Nitrogen mineralization from organic residues: research opportunities. J. Environ. Qual. 34, 75-79. Doi: 10.2134/ jeq2005.0075 Castellanos, J.Z. y P.F. Pratt. 1981. Mineralization of manure nitrogen - correlation with laboratory indexes. Soil Sci. Soc. Amer. J. 45, 354-357. Doi: 10.2136/ sssaj1981.03615995004500020025x Chadwick, D.R., F. John, B.F. Pain, B.J. Chambersy J.C. Williams. 2000. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment. J. Agric. Sci. 134, 159-168. Doi: 10.1017/ S0021859699007510 Clark, G.J., N. Dodgshun, P.W.G. Sale y C. Tang. 2007. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol. Biochem. 39, 2806-2817. Doi: 10.1016/j. soilbio.2007.06.003 Corbeels, M., G. Hofmany O. Van Cleemput. 1999. Simulation of net N immobilization and mineralisation in substrate-amended soils by the NCSOIL computer model. Biol. Fertil. Soils 28, 422-430. Doi: 10.1007/ s003740050515 De Neve, S. y G. Hofman. 1996. Modelling N mineralization of vegetable crop residues during laboratory incubations. Soil Biol. Biochem. 28, 1451-1457. Doi: 10.1016/S0038-0717(96)00154-X Delin, S. y B. Lindén. 2002. Relations between net nitrogen mineralization and soil characteristics within an arable field. Acta Agric. Scand. Sect. B Soil Plant Sci. 52, 78-85. Doi: 10.1080/090647102321089819 Ding, Y., Y. Liu, W. Wu, D. Shi, M. Yang y Z. Zhong. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Poll. 213, 47-55. Doi: 10.1007/s11270-010-0366-4 Doublet, J., C. Francou, J.P. Pétraud, M.F. Dignac, M. Poitrenaud y S. Houot. 2010. Distribution of C and N mineralization of a sludge compost within particle-size fractions. Bioresource Technol. 101(4), 1254-1262. Doi: 10.1016/j.biortech.2009.09.037 Fangueiro, D., G. de Sousa, E. Vasconcelos y E. Duarte. 2012. Influence of nitrogen content in the soil solution on potential nitrogen mineralization of organic residues. Arch. Agron. Soil Sci. 58, S112-S115. Doi: 10.1080/03650340.2012.694136 Flavel, T.C. y D.V. Murphy. 2006. Carbon and nitrogen mineralization rates after application of organic amendments to soil. J. Environ. Qual. 35, 183. Doi: 10.2134/ jeq2005.0022 Gilly, J.E. y B. Eghball. 2002. Residual effects of compost and fertilizer applications on nutrients in runoff. Trans. Amer. Soc. Agric. Biol. Eng. 45, 1905-1910. Gilmour, J.T. 1998. Carbon and nitrogen mineralization during co- utilization of biosolids and composts. pp. 89-112. En: Brown, S., J.S. Angle y L. Jacobs (eds.). Beneficial co-utilization of agricultural, municipal, and industrial by-products. Kluwer Academic Publ., Dordrecht, The Netherlands. Doi: 10.1007/978-94-011-5068-2_8 González, P.S.J., A. Cabaneiro, M.C. Villar, M. Carballas y T. Carballa. 1996. Effect of soil characteristics on N mineralization capacity in 112 native and agricultural soils from the northwest of Spain. Biol. Fert. Soils 22, 252-260. Doi: 10.1007/BF00382521 He, Z. y H. Zhang (eds.). 2014. Applied manure and nutrient chemistry for sustainable agriculture and environment. Springer, New York, USA. Doi: 10.1007/978-94-017-8807-6 Huang, C.C. y Z.S. Chen. 2009. Carbon and nitrogen mineralization of sewage sludge compost in soils with a different initial pH. Soil Sci. Plant Nutr. 55, 715-724. Doi: 10.1111/j.1747-0765.2009.00410 Jenkinson, D.S. 1981. The fate of plant and animal residues in soil. pp. 505-561. En: Greenland, D.J. y M.H.B. Hayes (eds.). The chemistry of soil processes. John Wiley & Sons, New York, USA. Mardomingo, J.I., R.P. Soler, M.Á. Casermeiro, M.T. de la Cruz y A. Polo. 2013. Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma 206, 40-48. Doi: 10.1016/j.geoderma.2013.04.025 Karyotis, T., t. Mitsimponas, M. Tziouvalekas y C. Noulas. 2006. Net nitrogen and sulfur mineralization in mountainous soils amended with indigenous plant residues. Comm. Soil Sci. Plant Anal. 37, 2805-2817. Doi: 10.1080/00103620600832605 Keuskamp, J.A., H. Schmitt, H.J. Laanbroek, J.T.A. Verhoeven y M.M. Hefting. 2013. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biol. Biochem. 57, 822-829. Doi: 10.1016/j. soilbio.2012.08.007 Kim, T.T.C., M.T. Rose, T.R. Cavagnaroy A.F. Patti. 2015. Lignite amendment has limited impacts on soil microbial communities and mineral nitrogen availability. Appl. Soil Ecol. 95, 140-150. 10.1016/j.apsoil.2015.06.020 Kruse, J., D.E. Kissel y M.L. Cabrera. 2004. Effects of drying and rewetting on carbon and nitrogen mineralization in soils and incorporated residues. Nutr. Cycl. Agroecosyst. 69, 247-256. Doi: 10.1023/B:- FRES.0000035197.57441.cd Kumar, K., C.J. Rosen y S.C. Gupta. 2002. Kinetics of nitrogen mineralization in soils amended with sugar beet processing by-products. Comm. Soil Sci. Plant Anal. 33, 3635-3651. Doi: 10.1081/CSS-120015912 Lehmann, J. 2007. A handful of carbon. Nature 447, 143- 144. Doi: 10.1038/447143a Linn D. M. y J.W. Doran. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and notilled soils. Soil Sci. Soc. Amer. J. 48,1267-1272. Doi: 10.2136/ sssaj1984.03615995004800060013x Marx, M., B. Marschner y P. Nelson, P. 2002. Short-term effects of incubated legume and grass materials on soil acidity and C and N mineralization in a soil of northeast Australia. Aust. J. Soil Resp. 40, 1231-1241. Doi: 10.1071/SR01099 Matus, F.J., C.H. Lusk y C.R. Maire. 2007. Effects of soil texture, carbon input rates, and litter quality on free organic matter and nitrogen mineralization in Chilean rain forest and agricultural soils. Comm. Soil Sci. Plant Anal. 39, 187-201. Doi: 10.1080/00103620701759137 Mohanty, M., K.S. Reddy, M.E. Probert, R.C. Dalal, A.S. Rao y N.W. Menzies. 2011. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Model. 222(3), 719- 726. Doi: 10.1016/j.ecolmodel.2010.10.027 Motavalli, P.P., C.A. Palm, E.T. Elliott, S.D. Frey y P.C. Smithson. 1995. Nitrogen mineralization in humid tropical forest soils: Mineralogy, texture, and measured nitrogen fractions. Soil Sci. Soc. Amer. J. 59, 1168-1175. Doi: 10.2136/sssaj1995.03615995005900040032x Mubarak, A.R., A.B. Rosenani, S.D. Zauyah y A.R. Anuar. 2001. Nitrogen mineralization from crop residues in selected tropical soils. Trop. Agric. 78,165-173. Mubarak, A.R., E.A.M. Gali, A.G. Mohamed, D. Steffens y A.H. Awadelkarim. 2010. Nitrogen mineralization from five manures as influenced by chemical composition and soil type. Comm. Soil Sci. Plant Anal. 41, 1903-1920. Doi: 10.1080/00103624.2010.495802 Naramabuye, F.X. y R.J. Haynes. 2006. Effect of organic amendments on soil pH and Al solubility and use of laboratory indices to predict their liming effect. Soil Sci. 171, 754-763. Doi: 10.1097/01.ss.0000228366.17459.19 Nourbakhsh, F. y R.P. Dick. 2005. Net nitrogen mineralization or immobilization potential in a residue-amended calcareous soil. Arid Land Res. Manag. 19, 299-306. Doi: 10.1080/15324980500299615 Ordoñez, Y.M., B.R. Fernandez, L.S. Lara, A. Rodriguez, D. Uribe y I. R. Sanders. 2016. Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS ONE 11(6), e0154438. Doi: 10.1371/journal.pone.0154438 Owen, K.M., R.H. Marrs, C.S.R. Snow y C.E. Evans. 1999. Soil acidification e the use of sulphur and acidic plant materials to acidify arable soils for the recreation of heathland and acidic grassland at Minsmere. Biol. Conserv. 87, 105-121. Doi: 10.1016/ S0006-3207(98)00027-5 Pansu, M. y L. Thuriès. 2003. Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil. Soil Biol. Biochem 35, 37-48. Doi: 10.1016/S0038-0717(02)00234-1 Pare, T. y E.G. Gregorich. 1999. Soil textural effects on mineralization of nitrogen from crop residues and the added nitrogen interaction. Comm. Soil Sci. Plant Anal. 30, 145-157. Doi: 10.1080/00103629909370191 Paterson, E., R. Neilson, A.J. Midwood, S.M. Osborne, A. Sim, B. Thornton y P. Millard. 2011. Altered food web structure and C-flux pathways associated with mineralisation of organic amendments to agricultural soil. Appl. Soil Ecol. 48(2), 107-116. Doi: 10.1016/j. apsoil.2011.04.006 Paul, K.I., A.S. Black y M.K. Conyers. 2001. Influence of fallow, wheat and subterranean clover on pH within an initially mixed surface soil in the field. Biol. Fertility Soils 33, 41-52. Doi: 10.1007/s003740000288 Petersen, S.L., B.A. Roundy y R.M. Bryant. 2004. Revegetation methods for high elevation roadsides at Bryce Canyon National Park, Utah. Restoration Ecol. 12, 248-257. Doi: 10.1111/j.1061-2971.2004.00321.x Qafoku, O.S., M.L. Cabrera, W.R. Windham y N.S. Hill. 2001. Rapid methods to determine potentially mineralizable nitrogen in broiler litter. J. Environ. Qual. 30, 217-221. Doi: 10.2134/jeq2001.301217x Qian, P. y J. Schoenau. 2002. Availability of nitrogen in solid manure amendments with different C:N ratios. Can. J. Soil Sci. 82, 219-225. Doi: 10.4141/S01-018 Qiu, S., A.J. McComb y R.W. Bell 2008. Ratios of C, N and P in soil water direct microbial immobilisation-mineralization and N availability in nutrient amended sandy soils in southwestern Australia. Agric. Ecosyst. Environ. 127, 93-99. Doi: 10.1016/j.agee.2008.03.002 Rao, R.B. y Y.C. Li. 2003. Nitrogen mineralization of cover crop residues in calcareous gravelly soil. Comm. Soil Sci. Plant Anal. 34, 299-313. Doi: 10.1081/ css-120017822 Ringuelet, A. y O.A. Bachmeier. 2002. Kinetics of soil nitrogen mineralization from undisturbed and disturbed soil. Comm. Soil Sci. Plant Anal. 33, 3703-3721. Doi: 10.1081/CSS-120015916 Rosolem, C.A. 2011. Exchangeable basic cations and nitrogen distribution in soil as affected by crop residues and nitrogen. Braz. Arch. Biol. Technol. 54, 441-450. Doi: 10.1590/S1516-89132011000300003 Sabahi, H., H. Veisi, S. Soufizadeh y K.S.Asilan, K.S. 2010. Effect of fertilization systems on soil microbial biomass and mineral nitrogen during Canola (Brassica napus L.) development stages. Comm. Soil Sci. Plant Anal. 41, 1665-1673. Doi: 10.1080/00103624.2010.489132 Sánchez de Prager, M., A. Rojas, J. Pérez, O. Zúñiga y J.M. Gascó. 2006. Actividad y biomasa microbianas como indicadores de materia orgánica en sistemas de cultivo de maracuyá (Passiflora edulis) en Toro, Valle del Cauca, Colombia. Acta Agron. 55(4), 7-12. Sano, S., J. Yanai y T. Kosaki. 2006. Relationships between labile organic matter and nitrogen mineralization in Japanese agricultural soils with reference to land use and soil type. Soil Sci. Plant Nutr. 52, 49-60. Doi: 10.1111/j.1747-0765.2006.00003 Seneviratne, G. 2000. Litter quality and nitrogen release in tropical agriculture: A synthesis. Biol. Fertility Soils 31, 60-64. Doi: 10.1007/s003740050624 Shah, Z., R.S. Ahmad y H.U. Rahman. 2010. Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice-wheat system. Pak. J. Bot. 42, 2589-2598. Soumare, M., F.M.G. Tack y M.G. Verloo. 2003. Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Bioresource Technol. 86, 15-20. Doi: 10.1016/ S0960-8524(02)00133-5 Stark, C., L.M. Condron, A. Stewart, H.J. Di y M. O’Callaghan. 2007. Influence of organic and mineral amendments on microbial soil properties and processes. Appl. Soil Ecol. 35, 79-93. Doi: 10.1016/j.apsoil.2006.05.001 Stenberg, B., A. Jonsson y T. Börjesson. 2002. NIR-technology for rationale soil analysis with implications for precision agriculture. En: Near infrared spectroscopy: Changing the world with NIR. NIR Publications, Chichester. Tejada, M., C. Benitez y J.L. Gonzalez. 2002. Nitrogen mineralization in soil with conventional and organomineral fertilization practices. Comm. Soil Sci. Plant Anal. 33, 3679-3702. Doi: 10.1081/CSS-120015915 Thomsen, I.K., J.E. Olesen, P. Schoenning, B. Jensen y B.T. Christensen. 2001. Net mineralization of soil N and 15N-ryegrass residues in differently textured soils of similar mineralogical composition. Soil Biol. Biochem. 33, 277-285. Doi: 10.1016/S0038-0717(00)00138-3 Thomsen, I.K. y J.E. Olesen. 2000. C and N mineralization of composted and anaerobically stored ruminant manure in differently textured soils. J. Agric. Sci. 135, 151-159. Doi: 10.1017/S0021859699008096 Thuriés, L., M. Pansu, C. Feller, P. Herrmann y J.C. Rémy. 2001. Kinetics of added organic matter decomposition in a Mediterranean sandy soil. Soil Biol. Biochem 33(7- 8), 997-1010. Doi: 10.1016/S0038-0717(01)00003-7 Torbert, H.A. y C. Wood. 1992. Effects of soil compaction and water-filled pore space on soil microbial activity and N losses. Comm. Soil Sci. Plant Anal. 23, 1321- 1331. Doi: 10.1080/00103629209368668 Van Kessel, J.S., J. Reeves y J. Meisinger. 2000. Nitrogen and carbon mineralization of potential manure components. J. Environ. Qual. 29, 1669-1677. Varma, A. (ed.). 2017. Soil biology. Springer, New York, USA. Vigil, M.F. y D.E. Kissel. 1995. Rate of nitrogen mineralized from incorporated crop residues as influenced by temperature. Soil Sci. Soc. Amer. J. 59, 1636-1644. Doi: 10.2136/sssaj1995.03615995005900060019x Wang, N., J.Y. Li y R.K. Xu. 2009. Use of agricultural by-products to study the pH effects in an acid tea garden soil. Soil Use Manag. 25, 128-132. Doi: 10.1111/j.1475-2743.2009.00203.x Watts, D.B., H. Torbert y S.A. Prior. 2007. Mineralization of nitrogen in soils amended with dairy manure as affected by wetting/drying cycles. Comm. Soil Sci. Plant Anal. 38, 2103-2116. Doi: 10.1080/00103620701548860 Woolf, D., J.E. Amonette, F. Street-Perrott, J. Lehmann y S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Comm. 1, 56. Doi: 10.1038/ ncomms1053 Xiao, K., J. Xu, C. Tang, J. Zhang y P.C. Brookes. 2013. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biol. Biochem. 67, 70-84. Doi: 10.1016/j.soilbio.2013.08.012 Xu, R.K. y D.R. Coventry. 2003. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil. Plant Soil 250, 113-119. Doi: 10.1023/A:1022882408133 Yuan, J.H., R.K. Xu, W. Qian y R.H. Wang. 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soils Sediments 11, 741-750. Doi: 10.1007/s11368-011-0365-0 Zhang, W., C. Liang, J. Kao-Kniffin, H. He, H. Xie, H. Zhang, H. y X. Zhang. 2015. Differentiating the mineralization dynamics of the originally present and newly synthesized amino acids in soil amended with available carbon and nitrogen substrates. Soil Biol. Biochem. 85, 162-169. Doi: 10.1016/j.soilbio.2015.03.004 Zhao, X., S. Wang y G. Xing. 2013. Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies. J. Soils Sediments 14(3), 471-482. Doi: 10.1007/ s11368-013-0803-2 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Colombiana de Ciencias Hortícolas;Vol. 11, núm. 1(2017) |
dc.rights.spa.fl_str_mv |
Copyright (c) 2017 Revista Colombiana de Ciencias Hortícolas |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright (c) 2017 Revista Colombiana de Ciencias Hortícolas https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.spa.fl_str_mv |
http://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/5663 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.uptc.edu.co/bitstreams/9ddc8ca9-38a4-4a26-b115-af9c642493ec/download https://repositorio.uptc.edu.co/bitstreams/fa45bc54-e630-4351-a75b-bea43deac58e/download https://repositorio.uptc.edu.co/bitstreams/75d0de3a-919a-46ad-b1c1-1c41d20b75c3/download https://repositorio.uptc.edu.co/bitstreams/0332932f-5f66-4abe-83bc-f3dc8924c7c7/download https://repositorio.uptc.edu.co/bitstreams/58f117e6-c454-460e-8e8a-c4730b694ea9/download https://repositorio.uptc.edu.co/bitstreams/d9f058a4-86ca-4cb3-b3bf-b1181bdb3cfc/download |
bitstream.checksum.fl_str_mv |
955c1db95f114883f8f0e8c14db639ee 8a4605be74aa9ea9d79846c1fba20a33 ff09fb87035768905ef32bd448b1fe1b ff09fb87035768905ef32bd448b1fe1b fb968d3d7aea83ec78f8dada523b1547 7f2b57b07eaa980f988444f11d128eea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
UPTC DSpace |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1814076242054348800 |
spelling |
Monsalve Camacho, Oscar IvánGutiérrez Díaz, Joan SebastiánCardona, William AndrésUniversidad Nacional de Colombia2017-08-02T22:45:57Z2017-08-02T22:45:57Z2017-06-13Monsalve Camacho, O. I., Gutiérrez Díaz, J. S. y Cardona, W. A. (2017), Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Revista Colombiana de Ciencias Hortícolas, 11(1), 200-209. DOI: https://doi.org/10.17584/rcch.2017v11i1.5663 . http://repositorio.uptc.edu.co/handle/001/18082011-2173En Línea: 2422-3719https://repositorio.uptc.edu.co/handle/001/180810.17584/rcch.2017v11i1.5663Páginas 200-209.La aplicación de enmiendas orgánicas es una práctica que se hace regularmente en sistemas de cultivos, con el fin de mejorar propiedades físicas y químicas del suelo y aportar nutrientes como nitrógeno (N). Para que las plantas puedan absorberlo, gran cantidad del N que es aportado a través de las enmiendas orgánicas, debe ser transformado de sus formas orgánicas a inorgánicas, en un proceso denominado mineralización. Se han desarrollado una gran cantidad de investigaciones tendientes a entender este proceso, y, cómo el aporte de enmiendas orgánicas influye en su dinámica. Esta revisión proporciona una visión global sobre los factores, de suelo y enmienda, que intervienen en el proceso de mineralización de N cuando se aplican al suelo enmiendas orgánicas de diferentes fuentes.ABSTRACT: The application of organic amendments is a practice that is done regularly in crop systems in order to improve the physical and chemical properties of the soil and provide nutrients such as nitrogen (N). In order for plants to absorb it, much of the N that is contributed through organic amendments must be transformed from its organic form to its inorganic form in a process called mineralization. A great amount of research has been developed to understand this process and how the contribution of organic amendments influences its dynamics. This review provides an overview of soil and amendment factors involved in the N mineralization process when organic amendments, from different sources, are applied to the soil.Bibliografía: páginas 206-209.Artículo revisado por pares.application/pdfspaUniversidad Pedagógica y Tecnológica de ColombiaCopyright (c) 2017 Revista Colombiana de Ciencias Hortícolashttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2http://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/5663Residuos orgánicosFertilidad del sueloResiduos orgánicos como fertilizantesEnmiendas orgánicasAplicación de abonosEnmiendas del sueloAbonos orgánicosLixiviaciónAbonos nitrogenadosAgrosaviaFactores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisiónFactors involved in the process of nitrogen mineralization when organic amendments are added to a soil. A reviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Abbasi, M.K. y A. Khizar. 2012. Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic-inorganic N sources and their effect on growth and N-uptake in maize. Ecol. Eng. 39, 123-132. Doi: 10.1016/j.ecoleng.2011.12.027Abbasi, M.K., M. Hina, A. Khalique y S.R. Khan. 2007. Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions. Comm. Soil Sci. Plant Anal. 38, 1691-1711. Doi: 10.1080/00103620701435464Abbasi, M.K., Z. Shah y W.A. Adams. 2001. Mineralization and nitrification potentials of grassland soils at shallow depth during laboratory incubation. J. Plant Nutr. Soil Sci. 164, 407-502. Doi: 10.1002/1522-2624(200110)164:5<497::AID-JPLN497>3.0.CO;2-EAl-Busaidi, K.T.S., A. Buerkert y R.G. Joergensen. 2014. Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils. J. Arid Environ. 100-101, 106-110. Doi: 10.1016/j. jaridenv.2013.10.013Ando, H., R.C. Aragones y G. Wada. 1992. Mineralization pattern of soil organic N of several soils in the tropics. Soil Sci. Plant Nutr. 38, 227-234. Doi: 10.1080/00380768.1992.10416485Antil, R., A. Bar-Tal, P. Fine y A. Hadas. 2011. predicting nitrogen and carbon mineralization of composted manure and sewage sludge in soil. Compost Sci. Util. 19, 33-43. Doi: 10.1080/1065657X.2011.10736974Aoyama, M. y T. Nozawa. 1993. Microbial biomass nitrogen and mineralization-immobilization processes of nitrogen in soils incubated with various organic materials. Soil Sci. Plant Nutr. 39, 23-32. Doi: 10.1080/00380768.1993.10416971Azcón-Bieto, J. y M. Talón.2008. Fundamentos de fisiología vegetal. 2ª ed. McGraw-Hill - Interamericana y UBE Editores, Madrid, España.Azeez, J.O. y W. Van Averbeke. 2010. Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Biores. Technol. 101(14), 5645- 5651. Doi: 10.1016/j.biortech.2010.01.119Blumenthal, D.M., N.R. Jordany M.P. Russelle. 2003. Soil carbon addition controls weeds and facilitates prairie restoration. Ecol. Appl. 13, 605-615. Doi: 10.1890/1051-0761(2003)013[0605:SCACWA]2.0. CO;2Börjesson, T., B. Stenberg, B. Lindén y A. Jonsson. 1999. NIR spectroscopy, mineral nitrogen analysis and soil incubations for the prediction of crop uptake of nitrogen during the growing season. Plant Soil 214, 75-83. Doi: 10.1023/A:1004775524189Cabrera, M.L., D.E. Kissel y M.F. Vigil. 2005. Nitrogen mineralization from organic residues: research opportunities. J. Environ. Qual. 34, 75-79. Doi: 10.2134/ jeq2005.0075Castellanos, J.Z. y P.F. Pratt. 1981. Mineralization of manure nitrogen - correlation with laboratory indexes. Soil Sci. Soc. Amer. J. 45, 354-357. Doi: 10.2136/ sssaj1981.03615995004500020025xChadwick, D.R., F. John, B.F. Pain, B.J. Chambersy J.C. Williams. 2000. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment. J. Agric. Sci. 134, 159-168. Doi: 10.1017/ S0021859699007510Clark, G.J., N. Dodgshun, P.W.G. Sale y C. Tang. 2007. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol. Biochem. 39, 2806-2817. Doi: 10.1016/j. soilbio.2007.06.003Corbeels, M., G. Hofmany O. Van Cleemput. 1999. Simulation of net N immobilization and mineralisation in substrate-amended soils by the NCSOIL computer model. Biol. Fertil. Soils 28, 422-430. Doi: 10.1007/ s003740050515De Neve, S. y G. Hofman. 1996. Modelling N mineralization of vegetable crop residues during laboratory incubations. Soil Biol. Biochem. 28, 1451-1457. Doi: 10.1016/S0038-0717(96)00154-XDelin, S. y B. Lindén. 2002. Relations between net nitrogen mineralization and soil characteristics within an arable field. Acta Agric. Scand. Sect. B Soil Plant Sci. 52, 78-85. Doi: 10.1080/090647102321089819Ding, Y., Y. Liu, W. Wu, D. Shi, M. Yang y Z. Zhong. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Poll. 213, 47-55. Doi: 10.1007/s11270-010-0366-4Doublet, J., C. Francou, J.P. Pétraud, M.F. Dignac, M. Poitrenaud y S. Houot. 2010. Distribution of C and N mineralization of a sludge compost within particle-size fractions. Bioresource Technol. 101(4), 1254-1262. Doi: 10.1016/j.biortech.2009.09.037Fangueiro, D., G. de Sousa, E. Vasconcelos y E. Duarte. 2012. Influence of nitrogen content in the soil solution on potential nitrogen mineralization of organic residues. Arch. Agron. Soil Sci. 58, S112-S115. Doi: 10.1080/03650340.2012.694136Flavel, T.C. y D.V. Murphy. 2006. Carbon and nitrogen mineralization rates after application of organic amendments to soil. J. Environ. Qual. 35, 183. Doi: 10.2134/ jeq2005.0022Gilly, J.E. y B. Eghball. 2002. Residual effects of compost and fertilizer applications on nutrients in runoff. Trans. Amer. Soc. Agric. Biol. Eng. 45, 1905-1910.Gilmour, J.T. 1998. Carbon and nitrogen mineralization during co- utilization of biosolids and composts. pp. 89-112. En: Brown, S., J.S. Angle y L. Jacobs (eds.). Beneficial co-utilization of agricultural, municipal, and industrial by-products. Kluwer Academic Publ., Dordrecht, The Netherlands. Doi: 10.1007/978-94-011-5068-2_8González, P.S.J., A. Cabaneiro, M.C. Villar, M. Carballas y T. Carballa. 1996. Effect of soil characteristics on N mineralization capacity in 112 native and agricultural soils from the northwest of Spain. Biol. Fert. Soils 22, 252-260. Doi: 10.1007/BF00382521He, Z. y H. Zhang (eds.). 2014. Applied manure and nutrient chemistry for sustainable agriculture and environment. Springer, New York, USA. Doi: 10.1007/978-94-017-8807-6Huang, C.C. y Z.S. Chen. 2009. Carbon and nitrogen mineralization of sewage sludge compost in soils with a different initial pH. Soil Sci. Plant Nutr. 55, 715-724. Doi: 10.1111/j.1747-0765.2009.00410Jenkinson, D.S. 1981. The fate of plant and animal residues in soil. pp. 505-561. En: Greenland, D.J. y M.H.B. Hayes (eds.). The chemistry of soil processes. John Wiley & Sons, New York, USA.Mardomingo, J.I., R.P. Soler, M.Á. Casermeiro, M.T. de la Cruz y A. Polo. 2013. Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma 206, 40-48. Doi: 10.1016/j.geoderma.2013.04.025Karyotis, T., t. Mitsimponas, M. Tziouvalekas y C. Noulas. 2006. Net nitrogen and sulfur mineralization in mountainous soils amended with indigenous plant residues. Comm. Soil Sci. Plant Anal. 37, 2805-2817. Doi: 10.1080/00103620600832605Keuskamp, J.A., H. Schmitt, H.J. Laanbroek, J.T.A. Verhoeven y M.M. Hefting. 2013. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biol. Biochem. 57, 822-829. Doi: 10.1016/j. soilbio.2012.08.007Kim, T.T.C., M.T. Rose, T.R. Cavagnaroy A.F. Patti. 2015. Lignite amendment has limited impacts on soil microbial communities and mineral nitrogen availability. Appl. Soil Ecol. 95, 140-150. 10.1016/j.apsoil.2015.06.020Kruse, J., D.E. Kissel y M.L. Cabrera. 2004. Effects of drying and rewetting on carbon and nitrogen mineralization in soils and incorporated residues. Nutr. Cycl. Agroecosyst. 69, 247-256. Doi: 10.1023/B:- FRES.0000035197.57441.cdKumar, K., C.J. Rosen y S.C. Gupta. 2002. Kinetics of nitrogen mineralization in soils amended with sugar beet processing by-products. Comm. Soil Sci. Plant Anal. 33, 3635-3651. Doi: 10.1081/CSS-120015912Lehmann, J. 2007. A handful of carbon. Nature 447, 143- 144. Doi: 10.1038/447143aLinn D. M. y J.W. Doran. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and notilled soils. Soil Sci. Soc. Amer. J. 48,1267-1272. Doi: 10.2136/ sssaj1984.03615995004800060013xMarx, M., B. Marschner y P. Nelson, P. 2002. Short-term effects of incubated legume and grass materials on soil acidity and C and N mineralization in a soil of northeast Australia. Aust. J. Soil Resp. 40, 1231-1241. Doi: 10.1071/SR01099Matus, F.J., C.H. Lusk y C.R. Maire. 2007. Effects of soil texture, carbon input rates, and litter quality on free organic matter and nitrogen mineralization in Chilean rain forest and agricultural soils. Comm. Soil Sci. Plant Anal. 39, 187-201. Doi: 10.1080/00103620701759137Mohanty, M., K.S. Reddy, M.E. Probert, R.C. Dalal, A.S. Rao y N.W. Menzies. 2011. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Model. 222(3), 719- 726. Doi: 10.1016/j.ecolmodel.2010.10.027Motavalli, P.P., C.A. Palm, E.T. Elliott, S.D. Frey y P.C. Smithson. 1995. Nitrogen mineralization in humid tropical forest soils: Mineralogy, texture, and measured nitrogen fractions. Soil Sci. Soc. Amer. J. 59, 1168-1175. Doi: 10.2136/sssaj1995.03615995005900040032xMubarak, A.R., A.B. Rosenani, S.D. Zauyah y A.R. Anuar. 2001. Nitrogen mineralization from crop residues in selected tropical soils. Trop. Agric. 78,165-173.Mubarak, A.R., E.A.M. Gali, A.G. Mohamed, D. Steffens y A.H. Awadelkarim. 2010. Nitrogen mineralization from five manures as influenced by chemical composition and soil type. Comm. Soil Sci. Plant Anal. 41, 1903-1920. Doi: 10.1080/00103624.2010.495802Naramabuye, F.X. y R.J. Haynes. 2006. Effect of organic amendments on soil pH and Al solubility and use of laboratory indices to predict their liming effect. Soil Sci. 171, 754-763. Doi: 10.1097/01.ss.0000228366.17459.19Nourbakhsh, F. y R.P. Dick. 2005. Net nitrogen mineralization or immobilization potential in a residue-amended calcareous soil. Arid Land Res. Manag. 19, 299-306. Doi: 10.1080/15324980500299615Ordoñez, Y.M., B.R. Fernandez, L.S. Lara, A. Rodriguez, D. Uribe y I. R. Sanders. 2016. Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS ONE 11(6), e0154438. Doi: 10.1371/journal.pone.0154438Owen, K.M., R.H. Marrs, C.S.R. Snow y C.E. Evans. 1999. Soil acidification e the use of sulphur and acidic plant materials to acidify arable soils for the recreation of heathland and acidic grassland at Minsmere. Biol. Conserv. 87, 105-121. Doi: 10.1016/ S0006-3207(98)00027-5Pansu, M. y L. Thuriès. 2003. Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil. Soil Biol. Biochem 35, 37-48. Doi: 10.1016/S0038-0717(02)00234-1Pare, T. y E.G. Gregorich. 1999. Soil textural effects on mineralization of nitrogen from crop residues and the added nitrogen interaction. Comm. Soil Sci. Plant Anal. 30, 145-157. Doi: 10.1080/00103629909370191Paterson, E., R. Neilson, A.J. Midwood, S.M. Osborne, A. Sim, B. Thornton y P. Millard. 2011. Altered food web structure and C-flux pathways associated with mineralisation of organic amendments to agricultural soil. Appl. Soil Ecol. 48(2), 107-116. Doi: 10.1016/j. apsoil.2011.04.006Paul, K.I., A.S. Black y M.K. Conyers. 2001. Influence of fallow, wheat and subterranean clover on pH within an initially mixed surface soil in the field. Biol. Fertility Soils 33, 41-52. Doi: 10.1007/s003740000288Petersen, S.L., B.A. Roundy y R.M. Bryant. 2004. Revegetation methods for high elevation roadsides at Bryce Canyon National Park, Utah. Restoration Ecol. 12, 248-257. Doi: 10.1111/j.1061-2971.2004.00321.xQafoku, O.S., M.L. Cabrera, W.R. Windham y N.S. Hill. 2001. Rapid methods to determine potentially mineralizable nitrogen in broiler litter. J. Environ. Qual. 30, 217-221. Doi: 10.2134/jeq2001.301217xQian, P. y J. Schoenau. 2002. Availability of nitrogen in solid manure amendments with different C:N ratios. Can. J. Soil Sci. 82, 219-225. Doi: 10.4141/S01-018Qiu, S., A.J. McComb y R.W. Bell 2008. Ratios of C, N and P in soil water direct microbial immobilisation-mineralization and N availability in nutrient amended sandy soils in southwestern Australia. Agric. Ecosyst. Environ. 127, 93-99. Doi: 10.1016/j.agee.2008.03.002Rao, R.B. y Y.C. Li. 2003. Nitrogen mineralization of cover crop residues in calcareous gravelly soil. Comm. Soil Sci. Plant Anal. 34, 299-313. Doi: 10.1081/ css-120017822Ringuelet, A. y O.A. Bachmeier. 2002. Kinetics of soil nitrogen mineralization from undisturbed and disturbed soil. Comm. Soil Sci. Plant Anal. 33, 3703-3721. Doi: 10.1081/CSS-120015916Rosolem, C.A. 2011. Exchangeable basic cations and nitrogen distribution in soil as affected by crop residues and nitrogen. Braz. Arch. Biol. Technol. 54, 441-450. Doi: 10.1590/S1516-89132011000300003Sabahi, H., H. Veisi, S. Soufizadeh y K.S.Asilan, K.S. 2010. Effect of fertilization systems on soil microbial biomass and mineral nitrogen during Canola (Brassica napus L.) development stages. Comm. Soil Sci. Plant Anal. 41, 1665-1673. Doi: 10.1080/00103624.2010.489132Sánchez de Prager, M., A. Rojas, J. Pérez, O. Zúñiga y J.M. Gascó. 2006. Actividad y biomasa microbianas como indicadores de materia orgánica en sistemas de cultivo de maracuyá (Passiflora edulis) en Toro, Valle del Cauca, Colombia. Acta Agron. 55(4), 7-12.Sano, S., J. Yanai y T. Kosaki. 2006. Relationships between labile organic matter and nitrogen mineralization in Japanese agricultural soils with reference to land use and soil type. Soil Sci. Plant Nutr. 52, 49-60. Doi: 10.1111/j.1747-0765.2006.00003Seneviratne, G. 2000. Litter quality and nitrogen release in tropical agriculture: A synthesis. Biol. Fertility Soils 31, 60-64. Doi: 10.1007/s003740050624Shah, Z., R.S. Ahmad y H.U. Rahman. 2010. Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice-wheat system. Pak. J. Bot. 42, 2589-2598.Soumare, M., F.M.G. Tack y M.G. Verloo. 2003. Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Bioresource Technol. 86, 15-20. Doi: 10.1016/ S0960-8524(02)00133-5Stark, C., L.M. Condron, A. Stewart, H.J. Di y M. O’Callaghan. 2007. Influence of organic and mineral amendments on microbial soil properties and processes. Appl. Soil Ecol. 35, 79-93. Doi: 10.1016/j.apsoil.2006.05.001Stenberg, B., A. Jonsson y T. Börjesson. 2002. NIR-technology for rationale soil analysis with implications for precision agriculture. En: Near infrared spectroscopy: Changing the world with NIR. NIR Publications, Chichester.Tejada, M., C. Benitez y J.L. Gonzalez. 2002. Nitrogen mineralization in soil with conventional and organomineral fertilization practices. Comm. Soil Sci. Plant Anal. 33, 3679-3702. Doi: 10.1081/CSS-120015915Thomsen, I.K., J.E. Olesen, P. Schoenning, B. Jensen y B.T. Christensen. 2001. Net mineralization of soil N and 15N-ryegrass residues in differently textured soils of similar mineralogical composition. Soil Biol. Biochem. 33, 277-285. Doi: 10.1016/S0038-0717(00)00138-3Thomsen, I.K. y J.E. Olesen. 2000. C and N mineralization of composted and anaerobically stored ruminant manure in differently textured soils. J. Agric. Sci. 135, 151-159. Doi: 10.1017/S0021859699008096Thuriés, L., M. Pansu, C. Feller, P. Herrmann y J.C. Rémy. 2001. Kinetics of added organic matter decomposition in a Mediterranean sandy soil. Soil Biol. Biochem 33(7- 8), 997-1010. Doi: 10.1016/S0038-0717(01)00003-7Torbert, H.A. y C. Wood. 1992. Effects of soil compaction and water-filled pore space on soil microbial activity and N losses. Comm. Soil Sci. Plant Anal. 23, 1321- 1331. Doi: 10.1080/00103629209368668Van Kessel, J.S., J. Reeves y J. Meisinger. 2000. Nitrogen and carbon mineralization of potential manure components. J. Environ. Qual. 29, 1669-1677.Varma, A. (ed.). 2017. Soil biology. Springer, New York, USA.Vigil, M.F. y D.E. Kissel. 1995. Rate of nitrogen mineralized from incorporated crop residues as influenced by temperature. Soil Sci. Soc. Amer. J. 59, 1636-1644. Doi: 10.2136/sssaj1995.03615995005900060019xWang, N., J.Y. Li y R.K. Xu. 2009. Use of agricultural by-products to study the pH effects in an acid tea garden soil. Soil Use Manag. 25, 128-132. Doi: 10.1111/j.1475-2743.2009.00203.xWatts, D.B., H. Torbert y S.A. Prior. 2007. Mineralization of nitrogen in soils amended with dairy manure as affected by wetting/drying cycles. Comm. Soil Sci. Plant Anal. 38, 2103-2116. Doi: 10.1080/00103620701548860Woolf, D., J.E. Amonette, F. Street-Perrott, J. Lehmann y S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Comm. 1, 56. Doi: 10.1038/ ncomms1053Xiao, K., J. Xu, C. Tang, J. Zhang y P.C. Brookes. 2013. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biol. Biochem. 67, 70-84. Doi: 10.1016/j.soilbio.2013.08.012Xu, R.K. y D.R. Coventry. 2003. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil. Plant Soil 250, 113-119. Doi: 10.1023/A:1022882408133Yuan, J.H., R.K. Xu, W. Qian y R.H. Wang. 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soils Sediments 11, 741-750. Doi: 10.1007/s11368-011-0365-0Zhang, W., C. Liang, J. Kao-Kniffin, H. He, H. Xie, H. Zhang, H. y X. Zhang. 2015. Differentiating the mineralization dynamics of the originally present and newly synthesized amino acids in soil amended with available carbon and nitrogen substrates. Soil Biol. Biochem. 85, 162-169. Doi: 10.1016/j.soilbio.2015.03.004Zhao, X., S. Wang y G. Xing. 2013. Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies. J. Soils Sediments 14(3), 471-482. Doi: 10.1007/ s11368-013-0803-2Revista Colombiana de Ciencias Hortícolas;Vol. 11, núm. 1(2017)ORIGINALPPS_562_Factores_intervienen_proceso_mineralizacion.pdfPPS_562_Factores_intervienen_proceso_mineralizacion.pdfArchivo principalapplication/pdf166454https://repositorio.uptc.edu.co/bitstreams/9ddc8ca9-38a4-4a26-b115-af9c642493ec/download955c1db95f114883f8f0e8c14db639eeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uptc.edu.co/bitstreams/fa45bc54-e630-4351-a75b-bea43deac58e/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPPS-562.pdf.txtPPS-562.pdf.txtExtracted texttext/plain46172https://repositorio.uptc.edu.co/bitstreams/75d0de3a-919a-46ad-b1c1-1c41d20b75c3/downloadff09fb87035768905ef32bd448b1fe1bMD53PPS_562_Factores_intervienen_proceso_mineralizacion.pdf.txtPPS_562_Factores_intervienen_proceso_mineralizacion.pdf.txtExtracted texttext/plain46172https://repositorio.uptc.edu.co/bitstreams/0332932f-5f66-4abe-83bc-f3dc8924c7c7/downloadff09fb87035768905ef32bd448b1fe1bMD55THUMBNAILPPS-562.pdf.jpgPPS-562.pdf.jpgGenerated Thumbnailimage/jpeg1643https://repositorio.uptc.edu.co/bitstreams/58f117e6-c454-460e-8e8a-c4730b694ea9/downloadfb968d3d7aea83ec78f8dada523b1547MD54PPS_562_Factores_intervienen_proceso_mineralizacion.pdf.jpgPPS_562_Factores_intervienen_proceso_mineralizacion.pdf.jpgGenerated Thumbnailimage/jpeg5502https://repositorio.uptc.edu.co/bitstreams/d9f058a4-86ca-4cb3-b3bf-b1181bdb3cfc/download7f2b57b07eaa980f988444f11d128eeaMD56001/1808oai:repositorio.uptc.edu.co:001/18082021-02-10 17:33:10.607https://creativecommons.org/licenses/by-nc/4.0/Copyright (c) 2017 Revista Colombiana de Ciencias Hortícolasopen.accesshttps://repositorio.uptc.edu.coUPTC DSpacerepositorio.uptc@uptc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |