Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot

Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variatio...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14297
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022
https://repositorio.uptc.edu.co/handle/001/14297
Palabra clave:
telerobotics
Lyapunov stability
Matlab
mobile robots
parametric model
simulation
estabilidad de Lyapunov
Matlab
modelo paramétrico
robots móviles
simulación
telerobótica
Rights
License
http://purl.org/coar/access_right/c_abf26
id REPOUPTC2_dd3b4dd834c129e1fa7d9b3da69f816d
oai_identifier_str oai:repositorio.uptc.edu.co:001/14297
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
dc.title.es-ES.fl_str_mv Desarrollo de un control adaptivo para el seguimiento de trayectoria de un robot móvil con ruedas
title Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
spellingShingle Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
telerobotics
Lyapunov stability
Matlab
mobile robots
parametric model
simulation
estabilidad de Lyapunov
Matlab
modelo paramétrico
robots móviles
simulación
telerobótica
title_short Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
title_full Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
title_fullStr Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
title_full_unstemmed Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
title_sort Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
dc.subject.en-US.fl_str_mv telerobotics
Lyapunov stability
Matlab
mobile robots
parametric model
simulation
topic telerobotics
Lyapunov stability
Matlab
mobile robots
parametric model
simulation
estabilidad de Lyapunov
Matlab
modelo paramétrico
robots móviles
simulación
telerobótica
dc.subject.es-ES.fl_str_mv estabilidad de Lyapunov
Matlab
modelo paramétrico
robots móviles
simulación
telerobótica
description Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variations of the dynamics over time or disturbances occur. To solve this problem, we used a recursive least squares (RLS) method that uses a discrete-time structure first-order autoregressive model with exogenous variable (ARX). We design and modify PID adaptive self-adjusting controllers in phase margin and pole allocation. The main contribution of this methodology is that it allows the permanent and online update of the robot model and the parameters of the adaptive self-adjusting PID controllers. In addition, a Lyapunov stability analysis technique was implemented for path and trajectory tracking control, this makes the errors generated in the positioning and orientation of the robot when performing a given task tend asymptotically to zero.  The performance of the PID adaptive self-adjusting controllers is measured through the implementation of the criteria of the integral of the error, which allows to determine the controller of best performance, being in this case, the PID adaptive self-adjusting type in pole assignment, allowing the mobile robot greater precision in tracking the trajectories and paths assigned, as well as less mechanical and energy wear, due to its smooth and precise movements.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:56Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:56Z
dc.date.none.fl_str_mv 2021-02-13
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a109
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022
10.19053/01211129.v30.n55.2021.12022
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14297
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022
https://repositorio.uptc.edu.co/handle/001/14297
identifier_str_mv 10.19053/01211129.v30.n55.2021.12022
dc.language.none.fl_str_mv eng
spa
dc.language.iso.spa.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10239
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10240
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10787
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf26
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf26
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 No. 55 (2021): January-March 2021 (Continuous Publication); e12022
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e12022
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633784748638208
spelling 2021-02-132024-07-05T19:11:56Z2024-07-05T19:11:56Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1202210.19053/01211129.v30.n55.2021.12022https://repositorio.uptc.edu.co/handle/001/14297Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variations of the dynamics over time or disturbances occur. To solve this problem, we used a recursive least squares (RLS) method that uses a discrete-time structure first-order autoregressive model with exogenous variable (ARX). We design and modify PID adaptive self-adjusting controllers in phase margin and pole allocation. The main contribution of this methodology is that it allows the permanent and online update of the robot model and the parameters of the adaptive self-adjusting PID controllers. In addition, a Lyapunov stability analysis technique was implemented for path and trajectory tracking control, this makes the errors generated in the positioning and orientation of the robot when performing a given task tend asymptotically to zero.  The performance of the PID adaptive self-adjusting controllers is measured through the implementation of the criteria of the integral of the error, which allows to determine the controller of best performance, being in this case, the PID adaptive self-adjusting type in pole assignment, allowing the mobile robot greater precision in tracking the trajectories and paths assigned, as well as less mechanical and energy wear, due to its smooth and precise movements.Los métodos clásicos de modelamiento y control aplicados a robots móviles de locomoción diferencial generan ecuaciones matemáticas que representan con aproximación la dinámica del sistema y funcionan relativamente bien cuando el sistema es lineal en un rango específico de trabajo. Sin embargo, pueden presentar baja precisión cuando hay muchas variaciones de la dinámica en el tiempo o se presentan perturbaciones.  Para solucionar este problema se empleó un método recursivo de mínimos cuadrados (RLS) que usa una estructura en tiempo discreto de primer orden del modelo autorregresivo con variable exógena (ARX). Se realiza el diseño y sintonización de controladores autoajustables adaptativos PID en margen de fase y en asignación de polos. El principal aporte de esta metodología es que permite la actualización permanente y en línea (on–line) del modelo del robot y de los parámetros de los controladores autoajustables adaptativos PID, además, se implementó una técnica de análisis de estabilidad de Lyapunov para el control de seguimiento de trayectorias y de caminos, esto hace que los errores generados en el posicionamiento y la orientación del robot al realizar una determinada tarea tiendan asintóticamente a cero. El desempeño de los controladores autoajustables adaptativos PID es medido a través de la implementación de los criterios de la integral del error, lo cuales permiten determinar el controlador de mejor rendimiento, siendo para este caso el del tipo autoajustable adaptivo PID en asignación de polos, permitiendo al robot móvil mayor precisión en el seguimiento de las trayectorias y caminos asignados, así como un menor desgaste mecánico y energético, debidos a sus movimientos suaves y precisos.application/pdfapplication/pdfapplication/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10239https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10240https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10787Copyright (c) 2021 Guiovanny Suarez-Rivera, Nelson David Muñoz-Ceballos, M.Sc., Henry Mauricio Vásquez-Carvajal, M.Sc.http://purl.org/coar/access_right/c_abf26http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 55 (2021): January-March 2021 (Continuous Publication); e12022Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e120222357-53280121-1129teleroboticsLyapunov stabilityMatlabmobile robotsparametric modelsimulationestabilidad de LyapunovMatlabmodelo paramétricorobots móvilessimulacióntelerobóticaDevelopment of an Adaptive Trajectory Tracking Control of Wheeled Mobile RobotDesarrollo de un control adaptivo para el seguimiento de trayectoria de un robot móvil con ruedasinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a109http://purl.org/coar/version/c_970fb48d4fbd8a85Suarez-Rivera, GuiovannyMuñoz-Ceballos, Nelson DavidVásquez-Carvajal, Henry Mauricio001/14297oai:repositorio.uptc.edu.co:001/142972025-07-18 11:53:14.331metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co