Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variatio...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14297
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022
https://repositorio.uptc.edu.co/handle/001/14297
- Palabra clave:
- telerobotics
Lyapunov stability
Matlab
mobile robots
parametric model
simulation
estabilidad de Lyapunov
Matlab
modelo paramétrico
robots móviles
simulación
telerobótica
- Rights
- License
- http://purl.org/coar/access_right/c_abf26
id |
REPOUPTC2_dd3b4dd834c129e1fa7d9b3da69f816d |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14297 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.en-US.fl_str_mv |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot |
dc.title.es-ES.fl_str_mv |
Desarrollo de un control adaptivo para el seguimiento de trayectoria de un robot móvil con ruedas |
title |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot |
spellingShingle |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot telerobotics Lyapunov stability Matlab mobile robots parametric model simulation estabilidad de Lyapunov Matlab modelo paramétrico robots móviles simulación telerobótica |
title_short |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot |
title_full |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot |
title_fullStr |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot |
title_full_unstemmed |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot |
title_sort |
Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot |
dc.subject.en-US.fl_str_mv |
telerobotics Lyapunov stability Matlab mobile robots parametric model simulation |
topic |
telerobotics Lyapunov stability Matlab mobile robots parametric model simulation estabilidad de Lyapunov Matlab modelo paramétrico robots móviles simulación telerobótica |
dc.subject.es-ES.fl_str_mv |
estabilidad de Lyapunov Matlab modelo paramétrico robots móviles simulación telerobótica |
description |
Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variations of the dynamics over time or disturbances occur. To solve this problem, we used a recursive least squares (RLS) method that uses a discrete-time structure first-order autoregressive model with exogenous variable (ARX). We design and modify PID adaptive self-adjusting controllers in phase margin and pole allocation. The main contribution of this methodology is that it allows the permanent and online update of the robot model and the parameters of the adaptive self-adjusting PID controllers. In addition, a Lyapunov stability analysis technique was implemented for path and trajectory tracking control, this makes the errors generated in the positioning and orientation of the robot when performing a given task tend asymptotically to zero. The performance of the PID adaptive self-adjusting controllers is measured through the implementation of the criteria of the integral of the error, which allows to determine the controller of best performance, being in this case, the PID adaptive self-adjusting type in pole assignment, allowing the mobile robot greater precision in tracking the trajectories and paths assigned, as well as less mechanical and energy wear, due to its smooth and precise movements. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:11:56Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:11:56Z |
dc.date.none.fl_str_mv |
2021-02-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a109 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022 10.19053/01211129.v30.n55.2021.12022 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14297 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022 https://repositorio.uptc.edu.co/handle/001/14297 |
identifier_str_mv |
10.19053/01211129.v30.n55.2021.12022 |
dc.language.none.fl_str_mv |
eng spa |
dc.language.iso.spa.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10239 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10240 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10787 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf26 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf26 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/xml |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 30 No. 55 (2021): January-March 2021 (Continuous Publication); e12022 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e12022 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633784748638208 |
spelling |
2021-02-132024-07-05T19:11:56Z2024-07-05T19:11:56Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1202210.19053/01211129.v30.n55.2021.12022https://repositorio.uptc.edu.co/handle/001/14297Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variations of the dynamics over time or disturbances occur. To solve this problem, we used a recursive least squares (RLS) method that uses a discrete-time structure first-order autoregressive model with exogenous variable (ARX). We design and modify PID adaptive self-adjusting controllers in phase margin and pole allocation. The main contribution of this methodology is that it allows the permanent and online update of the robot model and the parameters of the adaptive self-adjusting PID controllers. In addition, a Lyapunov stability analysis technique was implemented for path and trajectory tracking control, this makes the errors generated in the positioning and orientation of the robot when performing a given task tend asymptotically to zero. The performance of the PID adaptive self-adjusting controllers is measured through the implementation of the criteria of the integral of the error, which allows to determine the controller of best performance, being in this case, the PID adaptive self-adjusting type in pole assignment, allowing the mobile robot greater precision in tracking the trajectories and paths assigned, as well as less mechanical and energy wear, due to its smooth and precise movements.Los métodos clásicos de modelamiento y control aplicados a robots móviles de locomoción diferencial generan ecuaciones matemáticas que representan con aproximación la dinámica del sistema y funcionan relativamente bien cuando el sistema es lineal en un rango específico de trabajo. Sin embargo, pueden presentar baja precisión cuando hay muchas variaciones de la dinámica en el tiempo o se presentan perturbaciones. Para solucionar este problema se empleó un método recursivo de mínimos cuadrados (RLS) que usa una estructura en tiempo discreto de primer orden del modelo autorregresivo con variable exógena (ARX). Se realiza el diseño y sintonización de controladores autoajustables adaptativos PID en margen de fase y en asignación de polos. El principal aporte de esta metodología es que permite la actualización permanente y en línea (on–line) del modelo del robot y de los parámetros de los controladores autoajustables adaptativos PID, además, se implementó una técnica de análisis de estabilidad de Lyapunov para el control de seguimiento de trayectorias y de caminos, esto hace que los errores generados en el posicionamiento y la orientación del robot al realizar una determinada tarea tiendan asintóticamente a cero. El desempeño de los controladores autoajustables adaptativos PID es medido a través de la implementación de los criterios de la integral del error, lo cuales permiten determinar el controlador de mejor rendimiento, siendo para este caso el del tipo autoajustable adaptivo PID en asignación de polos, permitiendo al robot móvil mayor precisión en el seguimiento de las trayectorias y caminos asignados, así como un menor desgaste mecánico y energético, debidos a sus movimientos suaves y precisos.application/pdfapplication/pdfapplication/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10239https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10240https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10787Copyright (c) 2021 Guiovanny Suarez-Rivera, Nelson David Muñoz-Ceballos, M.Sc., Henry Mauricio Vásquez-Carvajal, M.Sc.http://purl.org/coar/access_right/c_abf26http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 55 (2021): January-March 2021 (Continuous Publication); e12022Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e120222357-53280121-1129teleroboticsLyapunov stabilityMatlabmobile robotsparametric modelsimulationestabilidad de LyapunovMatlabmodelo paramétricorobots móvilessimulacióntelerobóticaDevelopment of an Adaptive Trajectory Tracking Control of Wheeled Mobile RobotDesarrollo de un control adaptivo para el seguimiento de trayectoria de un robot móvil con ruedasinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a109http://purl.org/coar/version/c_970fb48d4fbd8a85Suarez-Rivera, GuiovannyMuñoz-Ceballos, Nelson DavidVásquez-Carvajal, Henry Mauricio001/14297oai:repositorio.uptc.edu.co:001/142972025-07-18 11:53:14.331metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |