Ripeness determination in feijoa fruits by using a computer vision system and colour. information
Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserv...
- Autores:
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_6516
- Fecha de publicación:
- 2016
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/10232
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603
https://repositorio.uptc.edu.co/handle/001/10232
- Palabra clave:
- Acca sellowiana
feijoa
pattern recognition
computer vision system.
Acca sellowiana
feijoa
reconocimiento de patrones
sistema de visión por computador.
- Rights
- License
- Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN
id |
REPOUPTC2_dc7a0cb8f45da5862512b155878c3c86 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/10232 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2016-08-152024-07-05T18:03:52Z2024-07-05T18:03:52Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/560310.19053/20278306.v7.n1.2016.5603https://repositorio.uptc.edu.co/handle/001/10232Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserve the integrity of the fruit on this analysis requires implementation of technologies to pass judgment on its condition without destroying it. The use of colour index, as physical property, contributes to solving this problem. In this document is presented a machine vision system to classify into three stages of maturity a specific exotic fruit: feijoa -Acca sellowiana-. The obtained classification using artificial intelligence tools, as these are artificial neural networks, have shown an adequate classification over 90% from 156 images of Feijoa fruit used in the study.Determinar el estado de madurez de productos agrícolas, generalmente depende de un análisis realizado por expertos humanos. La decisión final sobre el estado de madurez donde se encuentra el producto, resulta de correlacionar algunas de sus propiedades físicas con características químicas e internas del fruto. La necesidad de preservar la integridad del fruto en dicho análisis, hace necesario la implementación de tecnologías que emitan un juicio sobre el estado del mismo, sin necesidad de destruirlo. El uso del índice de color como propiedad física, contribuye a la solución de este problema. En este documento, se presenta un sistema de visión por computador para clasificar en tres estados de madurez un fruto exótico específico, feijoa -Acca Sellowiana-. Los resultados obtenidos a partir de la clasificación, utilizando diferentes clasificadores, permiten obtener una respuesta superior al 90%, para 156 imágenes de frutos de feijoa utilizadas en el estudio. application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603/4705Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓNhttp://purl.org/coar/access_right/c_abf17http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 7 No. 1 (2016): Julio-Diciembre; 111-126Revista de Investigación, Desarrollo e Innovación; Vol. 7 Núm. 1 (2016): Julio-Diciembre; 111-1262389-94172027-8306Acca sellowianafeijoapattern recognitioncomputer vision system.Acca sellowianafeijoareconocimiento de patronessistema de visión por computador.Ripeness determination in feijoa fruits by using a computer vision system and colour. informationDeterminación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de colorinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6516http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a100http://purl.org/coar/version/c_970fb48d4fbd8a85Bonilla-González, Juan PabloPrieto-Ortiz, Flavio Augusto001/10232oai:repositorio.uptc.edu.co:001/102322025-07-18 11:51:10.009metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
dc.title.es-ES.fl_str_mv |
Determinación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de color |
title |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
spellingShingle |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information Acca sellowiana feijoa pattern recognition computer vision system. Acca sellowiana feijoa reconocimiento de patrones sistema de visión por computador. |
title_short |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_full |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_fullStr |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_full_unstemmed |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
title_sort |
Ripeness determination in feijoa fruits by using a computer vision system and colour. information |
dc.subject.en-US.fl_str_mv |
Acca sellowiana feijoa pattern recognition computer vision system. |
topic |
Acca sellowiana feijoa pattern recognition computer vision system. Acca sellowiana feijoa reconocimiento de patrones sistema de visión por computador. |
dc.subject.es-ES.fl_str_mv |
Acca sellowiana feijoa reconocimiento de patrones sistema de visión por computador. |
description |
Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserve the integrity of the fruit on this analysis requires implementation of technologies to pass judgment on its condition without destroying it. The use of colour index, as physical property, contributes to solving this problem. In this document is presented a machine vision system to classify into three stages of maturity a specific exotic fruit: feijoa -Acca sellowiana-. The obtained classification using artificial intelligence tools, as these are artificial neural networks, have shown an adequate classification over 90% from 156 images of Feijoa fruit used in the study. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T18:03:52Z |
dc.date.available.none.fl_str_mv |
2024-07-05T18:03:52Z |
dc.date.none.fl_str_mv |
2016-08-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6516 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a100 |
format |
http://purl.org/coar/resource_type/c_6516 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603 10.19053/20278306.v7.n1.2016.5603 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/10232 |
url |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603 https://repositorio.uptc.edu.co/handle/001/10232 |
identifier_str_mv |
10.19053/20278306.v7.n1.2016.5603 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603/4705 |
dc.rights.es-ES.fl_str_mv |
Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf17 |
rights_invalid_str_mv |
Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN http://purl.org/coar/access_right/c_abf17 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 7 No. 1 (2016): Julio-Diciembre; 111-126 |
dc.source.es-ES.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 7 Núm. 1 (2016): Julio-Diciembre; 111-126 |
dc.source.none.fl_str_mv |
2389-9417 2027-8306 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633786508148736 |