Ripeness determination in feijoa fruits by using a computer vision system and colour. information

Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserv...

Full description

Autores:
Tipo de recurso:
http://purl.org/coar/resource_type/c_6516
Fecha de publicación:
2016
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/10232
Acceso en línea:
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603
https://repositorio.uptc.edu.co/handle/001/10232
Palabra clave:
Acca sellowiana
feijoa
pattern recognition
computer vision system.
Acca sellowiana
feijoa
reconocimiento de patrones
sistema de visión por computador.
Rights
License
Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN
id REPOUPTC2_dc7a0cb8f45da5862512b155878c3c86
oai_identifier_str oai:repositorio.uptc.edu.co:001/10232
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2016-08-152024-07-05T18:03:52Z2024-07-05T18:03:52Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/560310.19053/20278306.v7.n1.2016.5603https://repositorio.uptc.edu.co/handle/001/10232Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserve the integrity of the fruit on this analysis requires implementation of technologies to pass judgment on its condition without destroying it. The use of colour index, as physical property, contributes to solving this problem. In this document is presented a machine vision system to classify into three stages of maturity a specific exotic fruit: feijoa -Acca sellowiana-. The obtained classification using artificial intelligence tools, as these are artificial neural networks, have shown an adequate classification over 90% from 156 images of Feijoa fruit used in the study.Determinar el estado de madurez de productos agrícolas, generalmente depende de un análisis realizado por expertos humanos. La decisión final sobre el estado de madurez donde se encuentra el producto, resulta de correlacionar algunas de sus propiedades físicas con características químicas e internas del fruto. La necesidad de preservar la integridad del fruto en dicho análisis, hace necesario la implementación de tecnologías que emitan un juicio sobre el estado del mismo, sin necesidad de destruirlo. El uso del índice de color como propiedad física, contribuye a la solución de este problema. En este documento, se presenta un sistema de visión por computador para clasificar en tres estados de madurez un fruto exótico específico, feijoa -Acca Sellowiana-. Los resultados obtenidos a partir de la clasificación, utilizando diferentes clasificadores, permiten obtener una respuesta superior al 90%, para 156 imágenes de frutos de feijoa utilizadas en el estudio. application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603/4705Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓNhttp://purl.org/coar/access_right/c_abf17http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 7 No. 1 (2016): Julio-Diciembre; 111-126Revista de Investigación, Desarrollo e Innovación; Vol. 7 Núm. 1 (2016): Julio-Diciembre; 111-1262389-94172027-8306Acca sellowianafeijoapattern recognitioncomputer vision system.Acca sellowianafeijoareconocimiento de patronessistema de visión por computador.Ripeness determination in feijoa fruits by using a computer vision system and colour. informationDeterminación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de colorinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6516http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a100http://purl.org/coar/version/c_970fb48d4fbd8a85Bonilla-González, Juan PabloPrieto-Ortiz, Flavio Augusto001/10232oai:repositorio.uptc.edu.co:001/102322025-07-18 11:51:10.009metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Ripeness determination in feijoa fruits by using a computer vision system and colour. information
dc.title.es-ES.fl_str_mv Determinación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de color
title Ripeness determination in feijoa fruits by using a computer vision system and colour. information
spellingShingle Ripeness determination in feijoa fruits by using a computer vision system and colour. information
Acca sellowiana
feijoa
pattern recognition
computer vision system.
Acca sellowiana
feijoa
reconocimiento de patrones
sistema de visión por computador.
title_short Ripeness determination in feijoa fruits by using a computer vision system and colour. information
title_full Ripeness determination in feijoa fruits by using a computer vision system and colour. information
title_fullStr Ripeness determination in feijoa fruits by using a computer vision system and colour. information
title_full_unstemmed Ripeness determination in feijoa fruits by using a computer vision system and colour. information
title_sort Ripeness determination in feijoa fruits by using a computer vision system and colour. information
dc.subject.en-US.fl_str_mv Acca sellowiana
feijoa
pattern recognition
computer vision system.
topic Acca sellowiana
feijoa
pattern recognition
computer vision system.
Acca sellowiana
feijoa
reconocimiento de patrones
sistema de visión por computador.
dc.subject.es-ES.fl_str_mv Acca sellowiana
feijoa
reconocimiento de patrones
sistema de visión por computador.
description Determine the ripeness of agricultural products generally depends on an analysis by human experts. The final decision on the state of maturity where the product is found, requires correlating some of their physical features with chemical and internal characteristics of the fruit. The need to preserve the integrity of the fruit on this analysis requires implementation of technologies to pass judgment on its condition without destroying it. The use of colour index, as physical property, contributes to solving this problem. In this document is presented a machine vision system to classify into three stages of maturity a specific exotic fruit: feijoa -Acca sellowiana-. The obtained classification using artificial intelligence tools, as these are artificial neural networks, have shown an adequate classification over 90% from 156 images of Feijoa fruit used in the study.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-07-05T18:03:52Z
dc.date.available.none.fl_str_mv 2024-07-05T18:03:52Z
dc.date.none.fl_str_mv 2016-08-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6516
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a100
format http://purl.org/coar/resource_type/c_6516
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603
10.19053/20278306.v7.n1.2016.5603
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/10232
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603
https://repositorio.uptc.edu.co/handle/001/10232
identifier_str_mv 10.19053/20278306.v7.n1.2016.5603
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/5603/4705
dc.rights.es-ES.fl_str_mv Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf17
rights_invalid_str_mv Derechos de autor 2016 REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN
http://purl.org/coar/access_right/c_abf17
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 7 No. 1 (2016): Julio-Diciembre; 111-126
dc.source.es-ES.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 7 Núm. 1 (2016): Julio-Diciembre; 111-126
dc.source.none.fl_str_mv 2389-9417
2027-8306
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633786508148736