Application of deep learning techniques in modelling and observation of the solar photosphere

This work is part of the applications of neural networks in the study and modeling of the phenomena presentin the solar photosphere. The proposed research is based on the network model generative adversaries usingPytorch’s artificial intelligence modules. We aim at training a neural network capable...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15377
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240
https://repositorio.uptc.edu.co/handle/001/15377
Palabra clave:
GAN, DCGAN, Pytorch, fotósfera.
GAN, DCGAN, Pytorch, photosphere.
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_cfb56c5daa0f6756573bd7c704aa036f
oai_identifier_str oai:repositorio.uptc.edu.co:001/15377
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2022-12-122024-07-08T14:24:09Z2024-07-08T14:24:09Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1524010.19053/01217488.v1.n2E.2022.15240https://repositorio.uptc.edu.co/handle/001/15377This work is part of the applications of neural networks in the study and modeling of the phenomena presentin the solar photosphere. The proposed research is based on the network model generative adversaries usingPytorch’s artificial intelligence modules. We aim at training a neural network capable of generating groupsof images of a high similarity with input images, These images correspond to physical magnitudes of thesolar photosphere such as density, field magnetic field, plasma velocity, temperature, among others, obtainedfrom the MURaM simulation code, although the neural network can be trained to generate images of anyphysical magnitude. The work is focused on the generation of magnetic field images in the solar photosphere.Results of the neural network training process are presented, as well as the comparison between the trainingand generated images, and the challenges to use these tools in the study of the solar photosphere.Este trabajo se enmarca en las aplicaciones de las redes neuronales en el estudio y modelamiento delos fenómenos presentes en la fotósfera solar. La investigación propuesta se basa en el modelo de redesadversarias generativas haciendo uso de las módulos de inteligencia artificial de Pytorch. Se busca entrenaruna red neuronal capaz de generar grupos de imágenes de una alta similitud con imágenes de entrenamiento,dichas imágenes corresponden a magnitudes físicas de la fotósfera solar tales como densidad, campomagnético, velocidad del plasma, temperatura, entre otras, obtenidas del código de simulación MURaM,aunque la red neuronal puede entrenarse para generar imágenes de cualquier magnitud física. El trabajo seenfoca en la generación de imágenes de campo magnético en la fotósfera solar. Se presentan los resultadosde entrenamiento de la red neuronal, la comparativa entre las imágenes de entrenamiento y las imágenesgeneradas, y se proponen los retos para usar estas herramientas en el estudio de la fotósfera solar.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240/12659Ciencia En Desarrollo; Vol. 1 No. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-17Ciencia en Desarrollo; Vol. 1 Núm. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-172462-76580121-7488GAN, DCGAN, Pytorch, fotósfera.GAN, DCGAN, Pytorch, photosphere.Application of deep learning techniques in modelling and observation of the solar photosphereAplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solarinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Morales Suarez, Germain NicolasAgudelo Ortiz, Juan EstebanSantiago Vargas DominguezShelyag, Sergiy001/15377oai:repositorio.uptc.edu.co:001/153772025-07-18 10:56:40.397metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Application of deep learning techniques in modelling and observation of the solar photosphere
dc.title.es-ES.fl_str_mv Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
title Application of deep learning techniques in modelling and observation of the solar photosphere
spellingShingle Application of deep learning techniques in modelling and observation of the solar photosphere
GAN, DCGAN, Pytorch, fotósfera.
GAN, DCGAN, Pytorch, photosphere.
title_short Application of deep learning techniques in modelling and observation of the solar photosphere
title_full Application of deep learning techniques in modelling and observation of the solar photosphere
title_fullStr Application of deep learning techniques in modelling and observation of the solar photosphere
title_full_unstemmed Application of deep learning techniques in modelling and observation of the solar photosphere
title_sort Application of deep learning techniques in modelling and observation of the solar photosphere
dc.subject.es-ES.fl_str_mv GAN, DCGAN, Pytorch, fotósfera.
topic GAN, DCGAN, Pytorch, fotósfera.
GAN, DCGAN, Pytorch, photosphere.
dc.subject.en-US.fl_str_mv GAN, DCGAN, Pytorch, photosphere.
description This work is part of the applications of neural networks in the study and modeling of the phenomena presentin the solar photosphere. The proposed research is based on the network model generative adversaries usingPytorch’s artificial intelligence modules. We aim at training a neural network capable of generating groupsof images of a high similarity with input images, These images correspond to physical magnitudes of thesolar photosphere such as density, field magnetic field, plasma velocity, temperature, among others, obtainedfrom the MURaM simulation code, although the neural network can be trained to generate images of anyphysical magnitude. The work is focused on the generation of magnetic field images in the solar photosphere.Results of the neural network training process are presented, as well as the comparison between the trainingand generated images, and the challenges to use these tools in the study of the solar photosphere.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:09Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:09Z
dc.date.none.fl_str_mv 2022-12-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240
10.19053/01217488.v1.n2E.2022.15240
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15377
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240
https://repositorio.uptc.edu.co/handle/001/15377
identifier_str_mv 10.19053/01217488.v1.n2E.2022.15240
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240/12659
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 1 No. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-17
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 1 Núm. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-17
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633874268717056