Application of deep learning techniques in modelling and observation of the solar photosphere
This work is part of the applications of neural networks in the study and modeling of the phenomena presentin the solar photosphere. The proposed research is based on the network model generative adversaries usingPytorch’s artificial intelligence modules. We aim at training a neural network capable...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15377
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240
https://repositorio.uptc.edu.co/handle/001/15377
- Palabra clave:
- GAN, DCGAN, Pytorch, fotósfera.
GAN, DCGAN, Pytorch, photosphere.
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUPTC2_cfb56c5daa0f6756573bd7c704aa036f |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/15377 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2022-12-122024-07-08T14:24:09Z2024-07-08T14:24:09Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1524010.19053/01217488.v1.n2E.2022.15240https://repositorio.uptc.edu.co/handle/001/15377This work is part of the applications of neural networks in the study and modeling of the phenomena presentin the solar photosphere. The proposed research is based on the network model generative adversaries usingPytorch’s artificial intelligence modules. We aim at training a neural network capable of generating groupsof images of a high similarity with input images, These images correspond to physical magnitudes of thesolar photosphere such as density, field magnetic field, plasma velocity, temperature, among others, obtainedfrom the MURaM simulation code, although the neural network can be trained to generate images of anyphysical magnitude. The work is focused on the generation of magnetic field images in the solar photosphere.Results of the neural network training process are presented, as well as the comparison between the trainingand generated images, and the challenges to use these tools in the study of the solar photosphere.Este trabajo se enmarca en las aplicaciones de las redes neuronales en el estudio y modelamiento delos fenómenos presentes en la fotósfera solar. La investigación propuesta se basa en el modelo de redesadversarias generativas haciendo uso de las módulos de inteligencia artificial de Pytorch. Se busca entrenaruna red neuronal capaz de generar grupos de imágenes de una alta similitud con imágenes de entrenamiento,dichas imágenes corresponden a magnitudes físicas de la fotósfera solar tales como densidad, campomagnético, velocidad del plasma, temperatura, entre otras, obtenidas del código de simulación MURaM,aunque la red neuronal puede entrenarse para generar imágenes de cualquier magnitud física. El trabajo seenfoca en la generación de imágenes de campo magnético en la fotósfera solar. Se presentan los resultadosde entrenamiento de la red neuronal, la comparativa entre las imágenes de entrenamiento y las imágenesgeneradas, y se proponen los retos para usar estas herramientas en el estudio de la fotósfera solar.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240/12659Ciencia En Desarrollo; Vol. 1 No. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-17Ciencia en Desarrollo; Vol. 1 Núm. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-172462-76580121-7488GAN, DCGAN, Pytorch, fotósfera.GAN, DCGAN, Pytorch, photosphere.Application of deep learning techniques in modelling and observation of the solar photosphereAplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solarinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Morales Suarez, Germain NicolasAgudelo Ortiz, Juan EstebanSantiago Vargas DominguezShelyag, Sergiy001/15377oai:repositorio.uptc.edu.co:001/153772025-07-18 10:56:40.397metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Application of deep learning techniques in modelling and observation of the solar photosphere |
dc.title.es-ES.fl_str_mv |
Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar |
title |
Application of deep learning techniques in modelling and observation of the solar photosphere |
spellingShingle |
Application of deep learning techniques in modelling and observation of the solar photosphere GAN, DCGAN, Pytorch, fotósfera. GAN, DCGAN, Pytorch, photosphere. |
title_short |
Application of deep learning techniques in modelling and observation of the solar photosphere |
title_full |
Application of deep learning techniques in modelling and observation of the solar photosphere |
title_fullStr |
Application of deep learning techniques in modelling and observation of the solar photosphere |
title_full_unstemmed |
Application of deep learning techniques in modelling and observation of the solar photosphere |
title_sort |
Application of deep learning techniques in modelling and observation of the solar photosphere |
dc.subject.es-ES.fl_str_mv |
GAN, DCGAN, Pytorch, fotósfera. |
topic |
GAN, DCGAN, Pytorch, fotósfera. GAN, DCGAN, Pytorch, photosphere. |
dc.subject.en-US.fl_str_mv |
GAN, DCGAN, Pytorch, photosphere. |
description |
This work is part of the applications of neural networks in the study and modeling of the phenomena presentin the solar photosphere. The proposed research is based on the network model generative adversaries usingPytorch’s artificial intelligence modules. We aim at training a neural network capable of generating groupsof images of a high similarity with input images, These images correspond to physical magnitudes of thesolar photosphere such as density, field magnetic field, plasma velocity, temperature, among others, obtainedfrom the MURaM simulation code, although the neural network can be trained to generate images of anyphysical magnitude. The work is focused on the generation of magnetic field images in the solar photosphere.Results of the neural network training process are presented, as well as the comparison between the trainingand generated images, and the challenges to use these tools in the study of the solar photosphere. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T14:24:09Z |
dc.date.available.none.fl_str_mv |
2024-07-08T14:24:09Z |
dc.date.none.fl_str_mv |
2022-12-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240 10.19053/01217488.v1.n2E.2022.15240 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/15377 |
url |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240 https://repositorio.uptc.edu.co/handle/001/15377 |
identifier_str_mv |
10.19053/01217488.v1.n2E.2022.15240 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15240/12659 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Ciencia En Desarrollo; Vol. 1 No. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-17 |
dc.source.es-ES.fl_str_mv |
Ciencia en Desarrollo; Vol. 1 Núm. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 11-17 |
dc.source.none.fl_str_mv |
2462-7658 0121-7488 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633874268717056 |