SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic
In the sentiment classification process, the quality of the polarity varies depending on the characteristics or attributes possessed by the classifier and those of the tweet being analyzed; therefore, a sentiment classifier achieves its highest quality in scenarios in which its characteristics are s...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14380
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16395
https://repositorio.uptc.edu.co/handle/001/14380
- Palabra clave:
- Sentiment analysis
sentiment classifiers
polarity classifiers
polarity
fuzzy logic
Twitter
análisis de sentimientos
clasificadores de polaridad
clasificadores de sentimientos
lógica difusa
polaridad
twitter
- Rights
- License
- http://creativecommons.org/licenses/by/4.0
id |
REPOUPTC2_c4e3c91f55f4aff4a20a380338d4407b |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14380 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2023-12-012024-07-05T19:12:11Z2024-07-05T19:12:11Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1639510.19053/01211129.v32.n66.2023.16395https://repositorio.uptc.edu.co/handle/001/14380In the sentiment classification process, the quality of the polarity varies depending on the characteristics or attributes possessed by the classifier and those of the tweet being analyzed; therefore, a sentiment classifier achieves its highest quality in scenarios in which its characteristics are similar to the characteristics of the tweet. This article presents SentiFuzzy, an algorithm that, based on the characterization of attributes of five sentiment classifiers recognized in the literature, implemented a series of inference rules and fuzzy sets, which allowed to define mathematical weights for each classifier; thus, to know which classifier should be selected according to the nature of the analyzed tweet. Additionally, these weights were optimized by the Hill-Climbing optimization algorithm, which yielded, in some scenarios, a higher polarity accuracy than that reported in the state of the art and, in other cases, a competitive polarity accuracy compared to the polarity reported by the compared classifiers.En el proceso de clasificación de sentimientos, la calidad de la polaridad varía en relación con las características o atributos que posee el clasificador y las del tuit que se analiza, por lo tanto, un clasificador de sentimiento logra su mayor calidad cuando se encuentra en escenarios en que sus características son similares a las características del tuit. En este artículo se presenta SentiFuzzy, un algoritmo que, a partir de la caracterización de atributos de cinco clasificadores de sentimientos reconocidos en la literatura, implementó una serie de reglas de inferencia y conjuntos difusos que permitió definir pesos matemáticos para cada clasificador y de esta manera saber qué clasificador debe ser seleccionado según la naturaleza del tuit analizado. Adicionalmente, dichos pesos se optimizaron a través del algoritmo Hill Climbing, lo que permitió obtener para algunos escenarios una exactitud de polaridad más alta que la reportada en el estado del arte y, en otros casos, una exactitud de polaridad competitiva frente a la polaridad reportada por los clasificadores comparados.application/pdfengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/16395/13809Copyright (c) 2023 Jimena-Adriana Timaná-Peña, Carlos-Alberto Cobos-Lozada, Jason-Paul Anturi-Martínez, José-Luis Paz-Realpehttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf188http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 32 No. 66 (2023): October-December 2023 (Continuous Publication); e16395Revista Facultad de Ingeniería; Vol. 32 Núm. 66 (2023): Octubre-Diciembre 2023 (Publicación Continua) ; e163952357-53280121-1129Sentiment analysissentiment classifierspolarity classifierspolarityfuzzy logicTwitteranálisis de sentimientosclasificadores de polaridadclasificadores de sentimientoslógica difusapolaridadtwitterSentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy LogicSentiFuzzy: Clasificador de sentimientos en Twitter basado en lógica difusainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a271http://purl.org/coar/version/c_970fb48d4fbd8a85Timaná-Peña, Jimena-AdrianaCobos-Lozada, Carlos-AlbertoAnturi-Martínez, Jason-PaulPaz-Realpe, José-Luis001/14380oai:repositorio.uptc.edu.co:001/143802025-07-18 11:53:37.646metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic |
dc.title.es-ES.fl_str_mv |
SentiFuzzy: Clasificador de sentimientos en Twitter basado en lógica difusa |
title |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic |
spellingShingle |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic Sentiment analysis sentiment classifiers polarity classifiers polarity fuzzy logic análisis de sentimientos clasificadores de polaridad clasificadores de sentimientos lógica difusa polaridad |
title_short |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic |
title_full |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic |
title_fullStr |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic |
title_full_unstemmed |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic |
title_sort |
SentiFuzzy: A Twitter Sentiment Classifier Based on Fuzzy Logic |
dc.subject.en-US.fl_str_mv |
Sentiment analysis sentiment classifiers polarity classifiers polarity fuzzy logic |
topic |
Sentiment analysis sentiment classifiers polarity classifiers polarity fuzzy logic análisis de sentimientos clasificadores de polaridad clasificadores de sentimientos lógica difusa polaridad |
dc.subject.es-ES.fl_str_mv |
análisis de sentimientos clasificadores de polaridad clasificadores de sentimientos lógica difusa polaridad |
description |
In the sentiment classification process, the quality of the polarity varies depending on the characteristics or attributes possessed by the classifier and those of the tweet being analyzed; therefore, a sentiment classifier achieves its highest quality in scenarios in which its characteristics are similar to the characteristics of the tweet. This article presents SentiFuzzy, an algorithm that, based on the characterization of attributes of five sentiment classifiers recognized in the literature, implemented a series of inference rules and fuzzy sets, which allowed to define mathematical weights for each classifier; thus, to know which classifier should be selected according to the nature of the analyzed tweet. Additionally, these weights were optimized by the Hill-Climbing optimization algorithm, which yielded, in some scenarios, a higher polarity accuracy than that reported in the state of the art and, in other cases, a competitive polarity accuracy compared to the polarity reported by the compared classifiers. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:12:11Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:12:11Z |
dc.date.none.fl_str_mv |
2023-12-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a271 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16395 10.19053/01211129.v32.n66.2023.16395 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14380 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16395 https://repositorio.uptc.edu.co/handle/001/14380 |
identifier_str_mv |
10.19053/01211129.v32.n66.2023.16395 |
dc.language.none.fl_str_mv |
eng |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16395/13809 |
dc.rights.en-US.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf188 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 http://purl.org/coar/access_right/c_abf188 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 32 No. 66 (2023): October-December 2023 (Continuous Publication); e16395 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 32 Núm. 66 (2023): Octubre-Diciembre 2023 (Publicación Continua) ; e16395 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633832522809344 |