Test to early dark energy models using the Hubble expansion rate
In this work, we present two independent metrics to compute today’s value of the Hubble parameter Ho.Firstly, we implement the median statistics, a robust method unaffected by outliers and variations in thedata distribution. Under only a few assumptions and a large dataset of Ho, built from differen...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15374
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15216
https://repositorio.uptc.edu.co/handle/001/15374
- Palabra clave:
- Energía Oscura, Cosmología, Tensión de Hubble, Inferencia Bayesiana.
Dark Energy, Cosmology, Hubble tension, Bayesian Inference. 2
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUPTC2_be21d8edb490229c8c1867798bd25a8c |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/15374 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.en-US.fl_str_mv |
Test to early dark energy models using the Hubble expansion rate |
dc.title.es-ES.fl_str_mv |
Prueba a modelos de energía oscura temprana mediante la tasa de expansión cosmológica |
title |
Test to early dark energy models using the Hubble expansion rate |
spellingShingle |
Test to early dark energy models using the Hubble expansion rate Energía Oscura, Cosmología, Tensión de Hubble, Inferencia Bayesiana. Dark Energy, Cosmology, Hubble tension, Bayesian Inference. 2 |
title_short |
Test to early dark energy models using the Hubble expansion rate |
title_full |
Test to early dark energy models using the Hubble expansion rate |
title_fullStr |
Test to early dark energy models using the Hubble expansion rate |
title_full_unstemmed |
Test to early dark energy models using the Hubble expansion rate |
title_sort |
Test to early dark energy models using the Hubble expansion rate |
dc.subject.es-ES.fl_str_mv |
Energía Oscura, Cosmología, Tensión de Hubble, Inferencia Bayesiana. |
topic |
Energía Oscura, Cosmología, Tensión de Hubble, Inferencia Bayesiana. Dark Energy, Cosmology, Hubble tension, Bayesian Inference. 2 |
dc.subject.en-US.fl_str_mv |
Dark Energy, Cosmology, Hubble tension, Bayesian Inference. 2 |
description |
In this work, we present two independent metrics to compute today’s value of the Hubble parameter Ho.Firstly, we implement the median statistics, a robust method unaffected by outliers and variations in thedata distribution. Under only a few assumptions and a large dataset of Ho, built from different observationalmethods in more than 90 years, this non-parametric scheme provides an estimate of 68.0 ± 4.5 km/s/Mpc forHo. We submit the catalog to a second test: the least squares function χ2. We compare the predictions fromthe ΛCDM model (and the Planck collaboration 2018 cosmology) with the early dark energy parametrizationpresented in García et al. 2021. The best fit values with this method are 68.5 ± 0.1 and 66.1 ± 0.1 km/s/Mpc,for the former and latter models, respectively. We highlight that these robust statistical methods such as1 the median statistics, are a powerful tool to solve the current Hubble tension (as well as other possibleinconsistencies among astronomical datasets). Notably, this method does not rely on any cosmologicalmodels; therefore, it provides a clean (unbiased) prediction of the Universe’s expansion rate today. Finally,we find that our results are consistent with the forecast for the Hubble parameter from the early Universeestimates, rather than the local measurements, with two statistical schemes based on completely differentassumptions (parametric vs. non-parametric metrics) and a catalog of 574 values for Ho recovered from theliterature |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T14:24:09Z |
dc.date.available.none.fl_str_mv |
2024-07-08T14:24:09Z |
dc.date.none.fl_str_mv |
2022-12-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15216 10.19053/01217488.v1.n2E.2022.15216 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/15374 |
url |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15216 https://repositorio.uptc.edu.co/handle/001/15374 |
identifier_str_mv |
10.19053/01217488.v1.n2E.2022.15216 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15216/12658 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Ciencia En Desarrollo; Vol. 1 No. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 1-10 |
dc.source.es-ES.fl_str_mv |
Ciencia en Desarrollo; Vol. 1 Núm. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 1-10 |
dc.source.none.fl_str_mv |
2462-7658 0121-7488 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633822056972288 |
spelling |
2022-12-122024-07-08T14:24:09Z2024-07-08T14:24:09Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1521610.19053/01217488.v1.n2E.2022.15216https://repositorio.uptc.edu.co/handle/001/15374In this work, we present two independent metrics to compute today’s value of the Hubble parameter Ho.Firstly, we implement the median statistics, a robust method unaffected by outliers and variations in thedata distribution. Under only a few assumptions and a large dataset of Ho, built from different observationalmethods in more than 90 years, this non-parametric scheme provides an estimate of 68.0 ± 4.5 km/s/Mpc forHo. We submit the catalog to a second test: the least squares function χ2. We compare the predictions fromthe ΛCDM model (and the Planck collaboration 2018 cosmology) with the early dark energy parametrizationpresented in García et al. 2021. The best fit values with this method are 68.5 ± 0.1 and 66.1 ± 0.1 km/s/Mpc,for the former and latter models, respectively. We highlight that these robust statistical methods such as1 the median statistics, are a powerful tool to solve the current Hubble tension (as well as other possibleinconsistencies among astronomical datasets). Notably, this method does not rely on any cosmologicalmodels; therefore, it provides a clean (unbiased) prediction of the Universe’s expansion rate today. Finally,we find that our results are consistent with the forecast for the Hubble parameter from the early Universeestimates, rather than the local measurements, with two statistical schemes based on completely differentassumptions (parametric vs. non-parametric metrics) and a catalog of 574 values for Ho recovered from theliteratureEn este trabajo presentamos dos métricas independientes para computar el valor del parámetro de Hubblehoy Ho. Primero, implementamos la mediana estadística, un método robusto que no se ve afectado pordatos fuera de la distribución ni variaciones en los datos. Bajo unas pocas suposiciones y un conjuntosuficientemente grande de datos de Ho, construido de diferentes métodos observacionales por más de 90 años,este esquema no paramétrico predice un valor de 68.0 ± 4.5 km/s/Mpc para Ho. Sometemos nuestro catálogoa un segundo test: la minimización de la función χ2. Comparamos las predicciones del modelo ΛCDM (y lacosmología de la colaboración Planck 2018) con una parametrización efectiva del modelo de energía oscuratemprana presentada en García et al. 2021. El mejor ajuste con este método es de 68.5 ± 0.1 y 66.1 ± 0.1km/s/Mpc, para ΛCDM y el modelo de energía oscura temprana, respectivamente. Resaltamos que métodosestadísticos robustos como la mediana estadística tienen el potencial de resolver la actual tensión de Hubble(así como otras inconsistencias entre conjuntos de datos astronómicos excluyentes entre ellos). En particular,este método no descansa en un modelo cosmológico, por tanto da una predicción limpia (y no sesgada) de latasa de expansión del Universo hoy. Finalmente, nuestros resultados son consistentes con las medicionespara el parámetro de Hubble del Universo temprano, más que las predichas con mediciones locales, condos aproximaciones estadísticas que parten de suposiciones completamente diferentes (paramétrico vs. noparamétrico) y un catálogo de 574 valores de Ho tomados de la literaturaapplication/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15216/12658Ciencia En Desarrollo; Vol. 1 No. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 1-10Ciencia en Desarrollo; Vol. 1 Núm. 2E (2022): Núm. 2E (2022): Número Especial: VII Congreso de Astronomía y Astrofísica 2022; 1-102462-76580121-7488Energía Oscura, Cosmología, Tensión de Hubble, Inferencia Bayesiana.Dark Energy, Cosmology, Hubble tension, Bayesian Inference. 2Test to early dark energy models using the Hubble expansion ratePrueba a modelos de energía oscura temprana mediante la tasa de expansión cosmológicainfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2García, Luz ÁngelaCastañeda, Leonardo001/15374oai:repositorio.uptc.edu.co:001/153742025-07-18 10:56:33.012metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |