Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras

The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, t...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14357
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870
https://repositorio.uptc.edu.co/handle/001/14357
Palabra clave:
agriculture
coffee
multispectral images
synthetic data
vegetation index
UAV
agricultura
café
imagenes multiespectrles
datos sintéticos
índices de vegetación
Rights
License
http://creativecommons.org/licenses/by/4.0
id REPOUPTC2_b743c1f8881a34f7070709b237916629
oai_identifier_str oai:repositorio.uptc.edu.co:001/14357
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
dc.title.es-ES.fl_str_mv Uso de VANTs equipados con cámaras multiespectrales para el análisis de cultivos de café
title Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
spellingShingle Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
agriculture
coffee
multispectral images
synthetic data
vegetation index
UAV
agricultura
café
imagenes multiespectrles
datos sintéticos
índices de vegetación
title_short Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
title_full Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
title_fullStr Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
title_full_unstemmed Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
title_sort Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
dc.subject.en-US.fl_str_mv agriculture
coffee
multispectral images
synthetic data
vegetation index
UAV
topic agriculture
coffee
multispectral images
synthetic data
vegetation index
UAV
agricultura
café
imagenes multiespectrles
datos sintéticos
índices de vegetación
dc.subject.es-ES.fl_str_mv agricultura
café
imagenes multiespectrles
datos sintéticos
índices de vegetación
description The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, the coffee production sector faces several challenges, such as the need to increase the productivity, the yield, and the quality of coffee. This work estimated the health status of a Castilla variety crop located in San Joaquín, Tambo, Cauca to support the decision-making of coffee growers. For this, chlorophyll data were measured in the field with the CCM-200 plus device, multispectral images were captured with the MAPIR SURVEY 3 camera airborne on a SOLO 3DR UAV, and synthetic data were generated to increase the data set. Six vegetation indices were set, which—together with the chlorophyll values—were modeled through the implementation of simple and multiple linear regressions, decision trees, vector machines, random forests, and k-nearest neighbors. The model with the best performance and the lowest mean square error was disorder with the support vector machine. Likewise, the best performance indices in the models were CVI, GNDVI, and GCI, which are widely used in agriculture to estimate the chlorophyll of plants.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:12:09Z
dc.date.available.none.fl_str_mv 2024-07-05T19:12:09Z
dc.date.none.fl_str_mv 2022-11-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a116
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870
10.19053/01211129.v31.n62.2022.14870
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14357
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870
https://repositorio.uptc.edu.co/handle/001/14357
identifier_str_mv 10.19053/01211129.v31.n62.2022.14870
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12367
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12572
dc.rights.en-US.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf33
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf33
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e14870
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e14870
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633786359250945
spelling 2022-11-272024-07-05T19:12:09Z2024-07-05T19:12:09Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1487010.19053/01211129.v31.n62.2022.14870https://repositorio.uptc.edu.co/handle/001/14357The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, the coffee production sector faces several challenges, such as the need to increase the productivity, the yield, and the quality of coffee. This work estimated the health status of a Castilla variety crop located in San Joaquín, Tambo, Cauca to support the decision-making of coffee growers. For this, chlorophyll data were measured in the field with the CCM-200 plus device, multispectral images were captured with the MAPIR SURVEY 3 camera airborne on a SOLO 3DR UAV, and synthetic data were generated to increase the data set. Six vegetation indices were set, which—together with the chlorophyll values—were modeled through the implementation of simple and multiple linear regressions, decision trees, vector machines, random forests, and k-nearest neighbors. The model with the best performance and the lowest mean square error was disorder with the support vector machine. Likewise, the best performance indices in the models were CVI, GNDVI, and GCI, which are widely used in agriculture to estimate the chlorophyll of plants.El uso de Vehículos Aéreos No Tripulados (UAVs) equipados con cámaras espectrales se ha incrementado en los últimos años, especialmente en el sector agrícola ya que permite a los agricultores e investigadores analizar el estado de un cultivo, ya sea para analizar su salud, nutrientes, crecimiento, epidemias, entre otros parámetros. En Colombia, el sector cafetero enfrenta varios desafíos, como la necesidad de incrementar la productividad, el rendimiento y la calidad del café. Este trabajo estimó el estado sanitario de un cultivo variedad Castilla ubicado en San Joaquín, Tambo, Cauca para apoyar la toma de decisiones de los caficultores. Para ello, se midieron datos de clorofila en campo con el dispositivo CCM-200 plus, se capturaron imágenes multiespectrales con la cámara MAPIR SURVEY 3 aerotransportada en un UAV SOLO 3DR y se generaron datos sintéticos para aumentar el conjunto de datos. Se establecieron seis índices de vegetación, los cuales, junto con los valores de clorofila, se modelaron mediante la implementación de regresiones lineales simples y múltiples, árboles de decisión, máquinas vectoriales, bosques aleatorios y k-vecinos más cercanos. El modelo con el mejor rendimiento y el menor error cuadrático medio fue el modelo implementado con máquina de vectores de soporte. De igual forma, los mejores índices de desempeño en los modelos fueron CVI, GNDVI y GCI, los cuales son muy utilizados en agricultura para estimar la clorofila de las plantas.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12367https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12572Copyright (c) 2022 Natalia Arteaga-López, Carlos Delgado-Calvache, Juan-Fernando Casanova, Cristian Figeroahttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf33http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e14870Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e148702357-53280121-1129agriculturecoffeemultispectral imagessynthetic datavegetation indexUAVagriculturacaféimagenes multiespectrlesdatos sintéticosíndices de vegetaciónCoffee Crops Analysis Using UAVs Equipped with Multispectral CamerasUso de VANTs equipados con cámaras multiespectrales para el análisis de cultivos de caféinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a116http://purl.org/coar/version/c_970fb48d4fbd8a85Arteaga-López, NataliaDelgado-Calvache, CarlosCasanova, Juan-FernandoFigeroa, Cristian001/14357oai:repositorio.uptc.edu.co:001/143572025-07-18 11:53:14.348metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co