Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras
The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, t...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14357
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870
https://repositorio.uptc.edu.co/handle/001/14357
- Palabra clave:
- agriculture
coffee
multispectral images
synthetic data
vegetation index
UAV
agricultura
café
imagenes multiespectrles
datos sintéticos
índices de vegetación
- Rights
- License
- http://creativecommons.org/licenses/by/4.0
id |
REPOUPTC2_b743c1f8881a34f7070709b237916629 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14357 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.en-US.fl_str_mv |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras |
dc.title.es-ES.fl_str_mv |
Uso de VANTs equipados con cámaras multiespectrales para el análisis de cultivos de café |
title |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras |
spellingShingle |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras agriculture coffee multispectral images synthetic data vegetation index UAV agricultura café imagenes multiespectrles datos sintéticos índices de vegetación |
title_short |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras |
title_full |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras |
title_fullStr |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras |
title_full_unstemmed |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras |
title_sort |
Coffee Crops Analysis Using UAVs Equipped with Multispectral Cameras |
dc.subject.en-US.fl_str_mv |
agriculture coffee multispectral images synthetic data vegetation index UAV |
topic |
agriculture coffee multispectral images synthetic data vegetation index UAV agricultura café imagenes multiespectrles datos sintéticos índices de vegetación |
dc.subject.es-ES.fl_str_mv |
agricultura café imagenes multiespectrles datos sintéticos índices de vegetación |
description |
The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, the coffee production sector faces several challenges, such as the need to increase the productivity, the yield, and the quality of coffee. This work estimated the health status of a Castilla variety crop located in San Joaquín, Tambo, Cauca to support the decision-making of coffee growers. For this, chlorophyll data were measured in the field with the CCM-200 plus device, multispectral images were captured with the MAPIR SURVEY 3 camera airborne on a SOLO 3DR UAV, and synthetic data were generated to increase the data set. Six vegetation indices were set, which—together with the chlorophyll values—were modeled through the implementation of simple and multiple linear regressions, decision trees, vector machines, random forests, and k-nearest neighbors. The model with the best performance and the lowest mean square error was disorder with the support vector machine. Likewise, the best performance indices in the models were CVI, GNDVI, and GCI, which are widely used in agriculture to estimate the chlorophyll of plants. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:12:09Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:12:09Z |
dc.date.none.fl_str_mv |
2022-11-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a116 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870 10.19053/01211129.v31.n62.2022.14870 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14357 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870 https://repositorio.uptc.edu.co/handle/001/14357 |
identifier_str_mv |
10.19053/01211129.v31.n62.2022.14870 |
dc.language.none.fl_str_mv |
eng |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12367 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12572 |
dc.rights.en-US.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf33 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 http://purl.org/coar/access_right/c_abf33 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e14870 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e14870 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633786359250945 |
spelling |
2022-11-272024-07-05T19:12:09Z2024-07-05T19:12:09Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1487010.19053/01211129.v31.n62.2022.14870https://repositorio.uptc.edu.co/handle/001/14357The use of Unmanned Aerial Vehicles (UAVs) equipped with spectral cameras has increased in recent years, especially in the agricultural sector, because it allows farmers and researchers to analyze the state of a crop, i.e., health, nutrients, growth, epidemics, among other parameters. In Colombia, the coffee production sector faces several challenges, such as the need to increase the productivity, the yield, and the quality of coffee. This work estimated the health status of a Castilla variety crop located in San Joaquín, Tambo, Cauca to support the decision-making of coffee growers. For this, chlorophyll data were measured in the field with the CCM-200 plus device, multispectral images were captured with the MAPIR SURVEY 3 camera airborne on a SOLO 3DR UAV, and synthetic data were generated to increase the data set. Six vegetation indices were set, which—together with the chlorophyll values—were modeled through the implementation of simple and multiple linear regressions, decision trees, vector machines, random forests, and k-nearest neighbors. The model with the best performance and the lowest mean square error was disorder with the support vector machine. Likewise, the best performance indices in the models were CVI, GNDVI, and GCI, which are widely used in agriculture to estimate the chlorophyll of plants.El uso de Vehículos Aéreos No Tripulados (UAVs) equipados con cámaras espectrales se ha incrementado en los últimos años, especialmente en el sector agrícola ya que permite a los agricultores e investigadores analizar el estado de un cultivo, ya sea para analizar su salud, nutrientes, crecimiento, epidemias, entre otros parámetros. En Colombia, el sector cafetero enfrenta varios desafíos, como la necesidad de incrementar la productividad, el rendimiento y la calidad del café. Este trabajo estimó el estado sanitario de un cultivo variedad Castilla ubicado en San Joaquín, Tambo, Cauca para apoyar la toma de decisiones de los caficultores. Para ello, se midieron datos de clorofila en campo con el dispositivo CCM-200 plus, se capturaron imágenes multiespectrales con la cámara MAPIR SURVEY 3 aerotransportada en un UAV SOLO 3DR y se generaron datos sintéticos para aumentar el conjunto de datos. Se establecieron seis índices de vegetación, los cuales, junto con los valores de clorofila, se modelaron mediante la implementación de regresiones lineales simples y múltiples, árboles de decisión, máquinas vectoriales, bosques aleatorios y k-vecinos más cercanos. El modelo con el mejor rendimiento y el menor error cuadrático medio fue el modelo implementado con máquina de vectores de soporte. De igual forma, los mejores índices de desempeño en los modelos fueron CVI, GNDVI y GCI, los cuales son muy utilizados en agricultura para estimar la clorofila de las plantas.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12367https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14870/12572Copyright (c) 2022 Natalia Arteaga-López, Carlos Delgado-Calvache, Juan-Fernando Casanova, Cristian Figeroahttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf33http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e14870Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e148702357-53280121-1129agriculturecoffeemultispectral imagessynthetic datavegetation indexUAVagriculturacaféimagenes multiespectrlesdatos sintéticosíndices de vegetaciónCoffee Crops Analysis Using UAVs Equipped with Multispectral CamerasUso de VANTs equipados con cámaras multiespectrales para el análisis de cultivos de caféinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a116http://purl.org/coar/version/c_970fb48d4fbd8a85Arteaga-López, NataliaDelgado-Calvache, CarlosCasanova, Juan-FernandoFigeroa, Cristian001/14357oai:repositorio.uptc.edu.co:001/143572025-07-18 11:53:14.348metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |