Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos

Spa: La presente investigación tuvo como objetivo evaluar el efecto de diferentes sustratos en los parámetros productivos y nutricionales de las larvas de Tenebrio molitor. El proyecto se llevó a cabo en las instalaciones de la sede central de la Universidad Pedagógica y Tecnológica de Colombia, en...

Full description

Autores:
Sanabria García, David Leonardo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/9514
Acceso en línea:
https://repositorio.uptc.edu.co//handle/001/9514
Palabra clave:
Tenebrio molitor
Productos agrícolas - almacenamiento - Enfermedades y daños
Plagas de alimentos almacenados
Economía circular
Tenebrionidos
Harina de insecto
Alimento alternativo
Bioconversión
Producción sostenible
Proteína
Rights
openAccess
License
Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombia
id REPOUPTC2_b6acb4f48425b9772168bd0909958b34
oai_identifier_str oai:repositorio.uptc.edu.co:001/9514
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en_US.fl_str_mv Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
title Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
spellingShingle Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
Tenebrio molitor
Productos agrícolas - almacenamiento - Enfermedades y daños
Plagas de alimentos almacenados
Economía circular
Tenebrionidos
Harina de insecto
Alimento alternativo
Bioconversión
Producción sostenible
Proteína
title_short Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
title_full Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
title_fullStr Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
title_full_unstemmed Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
title_sort Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
dc.creator.fl_str_mv Sanabria García, David Leonardo
dc.contributor.advisor.none.fl_str_mv Rodríguez Molano, Carlos Eduardo
dc.contributor.author.none.fl_str_mv Sanabria García, David Leonardo
dc.subject.armarc.en_US.fl_str_mv Tenebrio molitor
Productos agrícolas - almacenamiento - Enfermedades y daños
Plagas de alimentos almacenados
Economía circular
Tenebrionidos
topic Tenebrio molitor
Productos agrícolas - almacenamiento - Enfermedades y daños
Plagas de alimentos almacenados
Economía circular
Tenebrionidos
Harina de insecto
Alimento alternativo
Bioconversión
Producción sostenible
Proteína
dc.subject.proposal.en_US.fl_str_mv Harina de insecto
Alimento alternativo
Bioconversión
Producción sostenible
Proteína
description Spa: La presente investigación tuvo como objetivo evaluar el efecto de diferentes sustratos en los parámetros productivos y nutricionales de las larvas de Tenebrio molitor. El proyecto se llevó a cabo en las instalaciones de la sede central de la Universidad Pedagógica y Tecnológica de Colombia, en la ciudad de Tunja, en el departamento de Boyacá, con una temperatura media de 13º C y una altitud de 2775 m.s.n.m. Durante las fases experimentales, las larvas de T. molitor se criaron en condiciones ambientales controladas (27±2 °C con una humedad relativa del 60-70%), de acuerdo con las recomendaciones para la cría de la especie. El proceso de alimentación duró un período de 5 meses. Las variables de desempeño productivo evaluadas fueron la ganancia de peso, la tasa de crecimiento y la densidad. En cuanto al desempeño nutricional, se evaluaron la materia seca, la proteína, las cenizas y el extracto etéreo. Se utilizó un diseño completamente al azar con cuatro tratamientos más un control. Cada tratamiento tuvo tres réplicas, para un total de 15 unidades experimentales. Se encontraron diferencias significativas en cuanto a la densidad, siendo mayor en el tratamiento con harina de trigo (2.25 larvas/cm3) y con la supervivencia más baja (87%), en comparación con el tratamiento con harina de soya (0.2 larvas/cm3) y una supervivencia del 99%. El nivel de proteína fue mayor en las larvas criadas en el tratamiento con avena en hojuelas (42.7±0.47a). En cuanto al desempeño nutricional de los demás parámetros evaluados, no se encontraron efectos diferenciales entre los diferentes tratamientos, excepto en el contenido de cenizas de las larvas alimentadas con harina de soya (7.3%±0.19).
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-02-21T14:45:02Z
dc.date.available.none.fl_str_mv 2024-02-21T14:45:02Z
dc.type.en_US.fl_str_mv Trabajo de grado pregrados
dc.type.coar.en_US.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.en_US.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.en_US.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.en_US.fl_str_mv Text
dc.type.redcol.en_US.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.coarversion.en_US.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.citation.en_US.fl_str_mv Sanabria García, D. L. (2023). Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ciencias Agrarias, Tunja. https://repositorio.uptc.edu.co//handle/001/9514
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co//handle/001/9514
identifier_str_mv Sanabria García, D. L. (2023). Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ciencias Agrarias, Tunja. https://repositorio.uptc.edu.co//handle/001/9514
url https://repositorio.uptc.edu.co//handle/001/9514
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.en_US.fl_str_mv Adhikari, P., Aryal, N., Ghimire, A., & Khanal, P. (2021). Sustainable biowaste recycling using insects. Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume 1, 399-420. https://doi.org/10.1016/B978-0-323-85223-4.00007-5 Afzal, A., & Asad, S. A. (2019). Microbial applications for sustainable agriculture. Innovations in Sustainable Agriculture, 43-77. https://doi.org/10.1007/978-3-030-23169-9_3
Aguilar-Miranda, E. D., Lopez, M. G., Escamilla-Santana, C., & Barba de la Rosa, A. P. (2001). Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. Journal of Agricultural and Food Chemistry, 50(1), 192-195. https://doi.org/10.1021/JF010691Y
Ahmad, F., Singh, A., & Kamal, A. (2019). Salicylic Acid–Mediated Defense Mechanisms to Abiotic Stress Tolerance. Plant Signaling Molecules: Role and Regulation under Stressful Environments, 355-369. https://doi.org/10.1016/B978-0-12-816451-8.00022-8 Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133-140. https://doi.org/10.1007/S11625-006-0013-6/TABLES/1
Andreadis, S. S., Panteli, N., Mastoraki, M., Rizou, E., Stefanou, V., Tzentilasvili, S., Sarrou, E., Chatzifotis, S., Krigas, N., & Antonopoulou, E. (2022). Towards functional insect feeds: Agri-food by-products enriched with post-distillation residues of medicinal aromatic plants in tenebrio molitor (coleoptera: Tenebrionidae) breeding. Antioxidants, 11(1). https://doi.org/10.3390/ANTIOX11010068/S1
Ao, X., Yoo, J. S., Wu, Z. L., & Kim, I. H. (2020). Can dried mealworm (Tenebrio molitor) larvae replace fish meal in weaned pigs? Livestock Science, 239, 104103. https://doi.org/10.1016/J.LIVSCI.2020.104103
AOAC. (2001). Determination of Total Nitrogen. Current Protocols in Food Analytical Chemistry, 00(1), B1.2.1-B1.2.9. https://doi.org/10.1002/0471142913.FAB0102S00
Applebaum, S. W. (1966). Digestion of Potato Starch by Larvae of the Flour Beetle, Tribolium castaneum. The Journal of Nutrition, 90(3), 235-239. https://doi.org/10.1093/JN/90.3.235
Arias, J. P. (2018). Nuevos abonos a partir de excrementos de insecto: el caso del gusano de la harina (Tenebrio molitor). Ingeniería y Región, 19, 1-10. https://doi.org/10.25054/22161325.1840
Baiano, A. (2020). Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology, 100, 35-50. https://doi.org/10.1016/J.TIFS.2020.03.040
Benzertiha, A., Kierończyk, B., Kołodziejski, P., Pruszyńska–Oszmałek, E., Rawski, M., Józefiak, D., & Józefiak, A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science, 99(1), 196-206. https://doi.org/10.3382/PS/PEZ450
Bordiean, A., Krzyżaniak, M., Aljewicz, M., & Stolarski, M. J. (2022). Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, Vol. 11, Page 3075, 11(19), 3075. https://doi.org/10.3390/FOODS11193075
Chávez-Guitrón, L., Cerón-Montes, G., Olvera-Contreras B, & Salinas-Pérez, F. (2014). Contenido proteico en larvas de Tenebrio molitor L. alimentadas con diferentes sustratos. Universo de la Tecnologia. https://biblat.unam.mx/hevila/Universodelatecnologica/2014/no18/4.pdf
Cho, K. H., Sampath, V., Kim, A. J., Yoo, J. S., & Kim, I. H. (2023). Evaluation of full-fatted and hydrolysate mealworm (Tenebrio molitor) larvae as a substitute for spray-dried plasma protein diet in weaning pigs. Journal of Animal Physiology and Animal Nutrition, 107(2), 589-597. https://doi.org/10.1111/JPN.13763
CODS. (2021). Los retos de la agricultura colombiana frente al cambio climático - CODS. Centro de los objetivos de desarrollo sostenible para America Latina. https://cods.uniandes.edu.co/los-retos-de-la-agricultura-colombiana-frente-al-cambio-climatico/
Coutinho, F., Castro, C., Guerreiro, I., Rangel, F., Couto, A., Serra, C. R., Peres, H., Pousão-Ferreira, P., Rawski, M., Oliva-Teles, A., & Enes, P. (2021). Mealworm larvae meal in diets for meagre juveniles: Growth, nutrient digestibility and digestive enzymes activity. Aquaculture, 535, 736362. https://doi.org/10.1016/J.AQUACULTURE.2021.736362
Cozma, A., Andrei, S., Pintea, A., Miere, D., Filip, L., Loghin, F., & Ferlay, A. (2015). Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, cholesterol, and vitamin A concentrations in Carpathian goats. http://agriculturejournals.cz/doi/10.17221/8275-CJAS.html, 60(7), 289-301. https://doi.org/10.17221/8275-CJAS
Dalmoro, Y. K., Adams, C. B., Haetinger, V. S., Bairros, L., Yacoubi, N., & Stefanello, C. (2021). Energy values of Tenebrio molitor larvae meal and tilapia byproduct meal for broiler chickens determined using the regression method. Animal Feed Science and Technology, 272, 114784. https://doi.org/10.1016/J.ANIFEEDSCI.2020.114784
Deruytter, D., & Coudron, C. L. (2021). The effects of density on the growth, survival and feed conversion of Tenebrio molitor larvae. https://doi.org/10.3920/JIFF2021.0057, 8(2), 141-146. https://doi.org/10.3920/JIFF2021.0057
Dreyer, M., Hörtenhuber, S., Zollitsch, W., Jäger, H., Schaden, L. M., Gronauer, A., & Kral, I. (2021). Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria – a comparison of mealworm and broiler as protein source. International Journal of Life Cycle Assessment, 26(11), 2232-2247. https://doi.org/10.1007/S11367-021-01980-4/FIGURES/7
Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492, 24-34. https://doi.org/10.1016/J.AQUACULTURE.2018.03.038
Dupriez, F., Rejasse, A., Rios, A., Lefebvre, T., & Nielsen‐leroux, C. (2022). Impact and Persistence of Serratia marcescens in Tenebrio molitor Larvae and Feed under Optimal and Stressed Mass Rearing Conditions. Insects 2022, Vol. 13, Page 458, 13(5), 458. https://doi.org/10.3390/INSECTS13050458
Elahi, U., Wang, J., Ma, Y. B., Wu, S. G., Wu, J., Qi, G. H., & Zhang, H. J. (2020). Evaluation of Yellow Mealworm Meal as a Protein Feedstuff in the Diet of Broiler Chicks. Animals 2020, Vol. 10, Page 224, 10(2), 224. https://doi.org/10.3390/ANI10020224
FAO. (2013). La contribución de Los insectos a La seguridad aLimentaria, Los medios de vida y eL medio ambiente 1 ¿Qué es La entomofagia? www.fao.org/forestry/edibleinsects/en/
FAO. (2022). Marco estratégico de la FAO. FAO. https://www.fao.org/strategic-framework/es
Farooq, M., & Pisante, M. (2019). Innovations in sustainable agriculture. Innovations in Sustainable Agriculture, 1-627. https://doi.org/10.1007/978-3-030-23169-9/COVER
Finke, M. D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21(3), 269-285. https://doi.org/10.1002/ZOO.10031
Fontes, T. V., de Oliveira, K. R. B., Almeida, I. L. G., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & E Rosa, P. V. (2019). Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals 2019, Vol. 9, Page 181, 9(4), 181. https://doi.org/10.3390/ANI9040181
Fukase, E., & Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Development, 132, 104954. https://doi.org/10.1016/J.WORLDDEV.2020.104954
Ghaly, A. E., & Alkoaik, F. N. (2009). The yellow mealworm as a novel source of protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331.
Ghosh, S., Lee, S. M., Jung, C., & Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20(2), 686-694. https://doi.org/10.1016/J.ASPEN.2017.04.003
Gkinali, A. A., Matsakidou, A., Vasileiou, E., & Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science & Technology, 119, 495-507. https://doi.org/10.1016/J.TIFS.2021.11.024
Heckmann, L. H., Andersen, J. L., Gianotten, N., Calis, M., Fischer, C. H., & Calis, H. (2018). Sustainable mealworm production for feed and food. Edible Insects in Sustainable Food Systems, 321-328. https://doi.org/10.1007/978-3-319-74011-9_19/COVER
Heuzé, V., & Tran, G. (2015). Rice Bran and Other Rice By-Products. INRAE, CIRAD, AFZ and FAO.
Heuzé, V., Tran, G., & Lebas, F. (2016). Maize Cobs. INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/718
Janssen, R. H., Vincken, J. P., Van Den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. https://doi.org/10.1021/ACS.JAFC.7B00471/ASSET/IMAGES/LARGE/JF-2017-00471Z_0001.JPEG
Jensen, K., Kristensen, T. N., Heckmann, L.-H. L., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. Insects as food and feed: from production to consumption, 174-198. https://doi.org/10.3920/978-90-8686-849-0
Khanal, P., Pandey, D., Næss, G., Cabrita, A. R. J., Fonseca, A. J. M., Maia, M. R. G., Timilsina, B., Veldkamp, T., Sapkota, R., & Overrein, H. (2023). Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. Journal of Cleaner Production, 389, 136104. https://doi.org/10.1016/J.JCLEPRO.2023.136104
Kröncke, N., & Benning, R. (2023). Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects, 14(3), 261. https://doi.org/10.3390/INSECTS14030261/S1
Kröncke, N., Wittke, S., Steinmann, N., & Benning, R. (2023). Analysis of the Composition of Different Instars of Tenebrio molitor Larvae using Near-Infrared Reflectance Spectroscopy for Prediction of Amino and Fatty Acid Content. 14, 310. https://doi.org/10.3390/insects14040310
Li, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92(1), 103-109. https://doi.org/10.1016/J.ACTAASTRO.2012.03.012
Liu, Z., Minor, M., Morel, P. C. H., & Najar-Rodriguez, A. J. (2018). Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environmental Entomology, 47(6), 1609-1617. https://doi.org/10.1093/ee/nvy141
Lock, E. J., Biancarosa, I., & Gasco, L. (2018). Insects as raw materials in compound feed for aquaculture. Edible Insects in Sustainable Food Systems, 263-276. https://doi.org/10.1007/978-3-319-74011-9_16/COVER
Makkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. https://doi.org/10.1016/J.ANIFEEDSCI.2014.07.008
Mamuad, L., Lee, S. H., Jeong, C. D., Ramos, S., Miguel, M., Son, A. R., Kim, S. H., Cho, Y. Il, & Lee, S. S. (2021). Ornamental fish, Cyprinus carpio, fed with fishmeal replacement Ptecticus tenebrifer and Tenebrio molitor. Aquaculture Research, 52(3), 980-990. https://doi.org/10.1111/ARE.14953
Mandrile, L., Fusaro, I., Amato, G., Marchis, D., Martra, G., & Rossi, A. M. (2018). Detection of insect’s meal in compound feed by Near Infrared spectral imaging. Food Chemistry, 267, 240-245. https://doi.org/10.1016/J.FOODCHEM.2018.01.127
Medina Roa, J. (2017). Tunja, Ciudad que emerge | La Red Cultural del Banco de la República. Banrepcultural. https://www.banrepcultural.org/biblioteca-virtual/credencial-historia-no-237/tunja-ciudad-que-emerge
Meireles, E. A., Carneiro, C. N. B., DaMatta, R. A., Samuels, R. I., & Silva, C. P. (2009). Digestion of starch granules from maize, potato and wheat by larvae of the the yellow mealworm, tenebrio molitor and the Mexican bean weevil, Zabrotes subfasciatus. Journal of Insect Science, 9(1), 1536-2442. https://doi.org/10.1673/031.009.4301/895407
Miglietta, P. P., De Leo, F., Ruberti, M., & Massari, S. (2015). Mealworms for Food: A Water Footprint Perspective. Water 2015, Vol. 7, Pages 6190-6203, 7(11), 6190-6203. https://doi.org/10.3390/W7116190
Morales-Ramos, J. A., Rojas, M. G., Shapiro-Llan, D. I., & Tedders, W. L. (2013). Use of Nutrient Self-Selection as a Diet Refining Tool in Tenebrio molitor (Coleoptera: Tenebrionidae). https://doi.org/10.18474/0749-8004-48.3.206, 48(3), 206-221. https://doi.org/10.18474/0749-8004-48.3.206
Ng, W. K. (2001). Potential of mealworm (Tenebrio molifor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research, 32(SUPPL. 1), 273-280. https://doi.org/10.1046/J.1355-557X.2001.00024.X
Nowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39-46. https://doi.org/10.1016/J.FOODCHEM.2014.10.114
Nyanzira, A., Machona, O., Matongorere, M., Chidzwondo, F., & Mangoyi, R. (2023). Analysis of Frass Excreted by Tenebrio molitor for Use as Fertilizer. Entomology and Applied Science Letters, 10(1), 29-37. https://doi.org/10.51847/XBW1OOFQXN
Oonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental Impact of the Production of Mealworms as a Protein Source for Humans – A Life Cycle Assessment. PLOS ONE, 7(12), e51145. https://doi.org/10.1371/JOURNAL.PONE.0051145
Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLOS ONE, 10(12), e0144601. https://doi.org/10.1371/JOURNAL.PONE.0144601
Oonincx, D. G. A. B., van Itterbeeck, J., Heetkamp, M. J. W., van den Brand, H., van Loon, J. J. A., & van Huis, A. (2010). An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLOS ONE, 5(12), e14445. https://doi.org/10.1371/JOURNAL.PONE.0014445
Paul, A., Frederich, M., Megido, R. C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G., & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/10.1016/j.aspen.2017.02.001
Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. https://doi.org/10.1016/J.ANIFEEDSCI.2017.02.007
Poveda, J. (2021). Insect frass in the development of sustainable agriculture. A review. https://doi.org/10.1007/s13593-020-00656-x/Published
Poveda, J., Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui-Martín, R., Rivas, R., & García-Fraile, P. (2019). Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Applied Soil Ecology, 142, 110-122. https://doi.org/10.1016/J.APSOIL.2019.04.016
Prokkola, J., Roff, D., Kärkkäinen, T., Krams, I., & Rantala, M. J. (2013). Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor. Heredity, 111(2), 89-96. https://doi.org/10.1038/HDY.2013.20
Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256, 113265. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113265
R software. (2023). R: The R Project for Statistical Computing. R Project for Statistical Computing. https://www.r-project.org/
Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal of Economic Entomology, 95(1), 214-220. https://doi.org/10.1603/0022-0493-95.1.214
Ratcliffe, N., Azambuja, P., & Mello, C. B. (2014). Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines. Evidence-based Complementary and Alternative Medicine : eCAM, 2014. https://doi.org/10.1155/2014/904958
Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2020). Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes 2020, Vol. 8, Page 857, 8(7), 857. https://doi.org/10.3390/PR8070857
Ravzanaadii, N., Kim, S.-H., Choi, W.-H., Hong, S.-J., & Kim, N.-J. (2012). Nutritional Value of Mealworm, Tenebrio molitor as Food Source. International Journal of Industrial Entomology, 25(1), 93-98. https://doi.org/10.7852/IJIE.2012.25.1.093
Remiro, A., Remón, S., & Fondevila, M. (2021). Alimentación de larvas de tenebrio molitor con subproducto de pan y ensilado de maíz en sustitución de trigo y salvado. XIX Jornadas sobre Producción Animal, 92. https://www.aida-itea.org/aida-itea/files/jornadas/2021/comunicaciones/2021_NyA_54.pdf
Rumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5), 802-823. https://doi.org/10.1002/MNFR.201200735
Rumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/J.IFSET.2012.11.005
Ruschioni, S., Loreto, N., Foligni, R., Mannozzi, C., Raffaelli, N., Zamporlini, F., Pasquini, M., Roncolini, A., Cardinali, F., Osimani, A., Aquilanti, L., Isidoro, N., Riolo, P., & Mozzon, M. (2020). Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio Molitor L.) Larvae. Foods 2020, Vol. 9, Page 317, 9(3), 317. https://doi.org/10.3390/FOODS9030317
Shahzad, A. (2011). Hemp fiber and its composites – a review. http://dx.doi.org/10.1177/0021998311413623, 46(8), 973-986. https://doi.org/10.1177/0021998311413623
Sideris, V., Georgiadou, M., Papadoulis, G., Mountzouris, K., & Tsagkarakis, A. (2021). Effect of Processed Beverage By-Product-Based Diets on Biological Parameters, Conversion Efficiency and Body Composition of Hermetia illucens (L) (Diptera: Stratiomyidae). Insects 2021, Vol. 12, Page 475, 12(5), 475. https://doi.org/10.3390/INSECTS12050475
Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. 4(6), 287-291. https://doi.org/10.4236/as.2013.46041
Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 1-14. https://doi.org/10.1186/S40104-021-00551-9/TABLES/6
Toviho, O. A., & Bársony, P. (2022). Nutrient Composition and Growth of Yellow Mealworm (Tenebrio molitor) at Different Ages and Stages of the Life Cycle. Agriculture 2022, Vol. 12, Page 1924, 12(11), 1924. https://doi.org/10.3390/AGRICULTURE12111924
Tzompa-Sosa, D. A., Yi, L., van Valenberg, H. J. F., van Boekel, M. A. J. S., & Lakemond, C. M. M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087-1094. https://doi.org/10.1016/J.FOODRES.2014.05.052
UN. (2023). Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. https://sdgs.un.org/2030agenda
Urrejola, S., Nespolo, R., & Lardies, M. A. (2011). Diet-induced developmental plasticity in life histories and energy metabolism in a beetle. Revista chilena de historia natural, 84(4), 523-533. https://doi.org/10.4067/S0716-078X2011000400005
van Broekhoven, S., Oonincx, D. G. A. B., van Huis, A., & van Loon, J. J. A. (2015). Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73, 1-10. https://doi.org/10.1016/J.JINSPHYS.2014.12.005
Veldkamp, T., & Bosch, G. (2015). Insects: A protein-rich feed ingredient in pig and poultry diets. Animal Frontiers, 5(2), 45-50. https://doi.org/10.2527/AF.2015-0019
Veldkamp, T., Duinkerken, G. van, Huis, A. van, Lakemond, C. M. M., Ottevanger, E., Bosch, G., & Boekel, T. van. (2012). Insects as a sustainable feed ingredient in pig and poultry diets : a feasibility study = Insecten als duurzame diervoedergrondstof in varkens- en pluimveevoeders : een haalbaarheidsstudie. http://www.livestockresearch.wur.nl
Yakti, W., Förster, N., Müller, M., Mewis, I., & Ulrichs, C. (2023). Hemp Waste as a Substrate for Hermetia illucens (L.) (Diptera: Stratiomyidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) Rearing. Insects 2023, Vol. 14, Page 183, 14(2), 183. https://doi.org/10.3390/INSECTS14020183
Yakti, W., Müller, M., Klost, M., Mewis, I., Dannehl, D., & Ulrichs, C. (2023). Physical Properties of Substrates as a Driver for Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae Growth. Insects 2023, Vol. 14, Page 266, 14(3), 266. https://doi.org/10.3390/INSECTS14030266
Zhang, Q., Hou, Y., Bazer, F. W., He, W., Posey, E. A., & Wu, G. (2021). Amino Acids in Swine Nutrition and Production. Advances in Experimental Medicine and Biology, 1285, 81-107. https://doi.org/10.1007/978-3-030-54462-1_6
Zhang, X., Tang, H., Chen, G., Qiao, L., Li, J., Liu, B., Liu, Z., Li, M., & Liu, X. (2019). Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. European Food Research and Technology, 245(12), 2631-2640. https://doi.org/10.1007/S00217-019-03336-7
Zhao, X., Vázquez-Gutiérrez, J. L., Johansson, D. P., Landberg, R., & Langton, M. (2016). Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLOS ONE, 11(2), e0147791. https://doi.org/10.1371/JOURNAL.PONE.0147791
dc.rights.en_US.fl_str_mv Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombia
dc.rights.uri.en_US.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.en_US.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.en_US.fl_str_mv Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.en_US.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by/4.0/
Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.en_US.fl_str_mv 1 recurso en línea (páginas sin numeración) : ilustraciones
dc.format.mimetype.en_US.fl_str_mv application/pdf
dc.publisher.faculty.en_US.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.en_US.fl_str_mv Tunja
dc.publisher.program.en_US.fl_str_mv Medicina Veterinaria y Zootecnia
institution Universidad Pedagógica y Tecnológica de Colombia
bitstream.url.fl_str_mv https://repositorio.uptc.edu.co/bitstreams/ceaaf750-a4b0-405c-98fc-ca85468cb33d/download
https://repositorio.uptc.edu.co/bitstreams/e20573d2-4ce0-49be-9e7e-96dcddea1d85/download
https://repositorio.uptc.edu.co/bitstreams/8706afc9-08dd-4466-a21f-39a76d46c474/download
https://repositorio.uptc.edu.co/bitstreams/bede1df1-d563-4f40-9f4d-7081ad7b375f/download
https://repositorio.uptc.edu.co/bitstreams/5a11c135-60c1-47db-8ca5-2d8fbdf5d159/download
https://repositorio.uptc.edu.co/bitstreams/ea14b769-4161-4a61-8ef9-9c54986b29cb/download
https://repositorio.uptc.edu.co/bitstreams/39270948-31cd-442c-a16c-7c0fa863ba04/download
bitstream.checksum.fl_str_mv e4ed2b366ff2af6068393db47c867eb7
ed0c435b2ecc95aa50702d0e1b65a78f
8a4605be74aa9ea9d79846c1fba20a33
5bbed92f44e40d1897fa595113472169
e1c06d85ae7b8b032bef47e42e4c08f9
db07a4f1921560cd499a42b3cebc103a
c626c1b2938041fd840f516e81506392
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv UPTC DSpace
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1814076204276252672
spelling Rodríguez Molano, Carlos EduardoSanabria García, David Leonardo2024-02-21T14:45:02Z2024-02-21T14:45:02Z2023Sanabria García, D. L. (2023). Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ciencias Agrarias, Tunja. https://repositorio.uptc.edu.co//handle/001/9514https://repositorio.uptc.edu.co//handle/001/9514Spa: La presente investigación tuvo como objetivo evaluar el efecto de diferentes sustratos en los parámetros productivos y nutricionales de las larvas de Tenebrio molitor. El proyecto se llevó a cabo en las instalaciones de la sede central de la Universidad Pedagógica y Tecnológica de Colombia, en la ciudad de Tunja, en el departamento de Boyacá, con una temperatura media de 13º C y una altitud de 2775 m.s.n.m. Durante las fases experimentales, las larvas de T. molitor se criaron en condiciones ambientales controladas (27±2 °C con una humedad relativa del 60-70%), de acuerdo con las recomendaciones para la cría de la especie. El proceso de alimentación duró un período de 5 meses. Las variables de desempeño productivo evaluadas fueron la ganancia de peso, la tasa de crecimiento y la densidad. En cuanto al desempeño nutricional, se evaluaron la materia seca, la proteína, las cenizas y el extracto etéreo. Se utilizó un diseño completamente al azar con cuatro tratamientos más un control. Cada tratamiento tuvo tres réplicas, para un total de 15 unidades experimentales. Se encontraron diferencias significativas en cuanto a la densidad, siendo mayor en el tratamiento con harina de trigo (2.25 larvas/cm3) y con la supervivencia más baja (87%), en comparación con el tratamiento con harina de soya (0.2 larvas/cm3) y una supervivencia del 99%. El nivel de proteína fue mayor en las larvas criadas en el tratamiento con avena en hojuelas (42.7±0.47a). En cuanto al desempeño nutricional de los demás parámetros evaluados, no se encontraron efectos diferenciales entre los diferentes tratamientos, excepto en el contenido de cenizas de las larvas alimentadas con harina de soya (7.3%±0.19).Bibliografía y webgrafía: páginas sin numeraciónPregradoMédico Veterinario y Zootecnista1 recurso en línea (páginas sin numeración) : ilustracionesapplication/pdfCopyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombiahttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratosTrabajo de grado pregradoshttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Adhikari, P., Aryal, N., Ghimire, A., & Khanal, P. (2021). Sustainable biowaste recycling using insects. Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume 1, 399-420. https://doi.org/10.1016/B978-0-323-85223-4.00007-5 Afzal, A., & Asad, S. A. (2019). Microbial applications for sustainable agriculture. Innovations in Sustainable Agriculture, 43-77. https://doi.org/10.1007/978-3-030-23169-9_3Aguilar-Miranda, E. D., Lopez, M. G., Escamilla-Santana, C., & Barba de la Rosa, A. P. (2001). Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. Journal of Agricultural and Food Chemistry, 50(1), 192-195. https://doi.org/10.1021/JF010691YAhmad, F., Singh, A., & Kamal, A. (2019). Salicylic Acid–Mediated Defense Mechanisms to Abiotic Stress Tolerance. Plant Signaling Molecules: Role and Regulation under Stressful Environments, 355-369. https://doi.org/10.1016/B978-0-12-816451-8.00022-8 Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133-140. https://doi.org/10.1007/S11625-006-0013-6/TABLES/1Andreadis, S. S., Panteli, N., Mastoraki, M., Rizou, E., Stefanou, V., Tzentilasvili, S., Sarrou, E., Chatzifotis, S., Krigas, N., & Antonopoulou, E. (2022). Towards functional insect feeds: Agri-food by-products enriched with post-distillation residues of medicinal aromatic plants in tenebrio molitor (coleoptera: Tenebrionidae) breeding. Antioxidants, 11(1). https://doi.org/10.3390/ANTIOX11010068/S1Ao, X., Yoo, J. S., Wu, Z. L., & Kim, I. H. (2020). Can dried mealworm (Tenebrio molitor) larvae replace fish meal in weaned pigs? Livestock Science, 239, 104103. https://doi.org/10.1016/J.LIVSCI.2020.104103AOAC. (2001). Determination of Total Nitrogen. Current Protocols in Food Analytical Chemistry, 00(1), B1.2.1-B1.2.9. https://doi.org/10.1002/0471142913.FAB0102S00Applebaum, S. W. (1966). Digestion of Potato Starch by Larvae of the Flour Beetle, Tribolium castaneum. The Journal of Nutrition, 90(3), 235-239. https://doi.org/10.1093/JN/90.3.235Arias, J. P. (2018). Nuevos abonos a partir de excrementos de insecto: el caso del gusano de la harina (Tenebrio molitor). Ingeniería y Región, 19, 1-10. https://doi.org/10.25054/22161325.1840Baiano, A. (2020). Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology, 100, 35-50. https://doi.org/10.1016/J.TIFS.2020.03.040Benzertiha, A., Kierończyk, B., Kołodziejski, P., Pruszyńska–Oszmałek, E., Rawski, M., Józefiak, D., & Józefiak, A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science, 99(1), 196-206. https://doi.org/10.3382/PS/PEZ450Bordiean, A., Krzyżaniak, M., Aljewicz, M., & Stolarski, M. J. (2022). Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, Vol. 11, Page 3075, 11(19), 3075. https://doi.org/10.3390/FOODS11193075Chávez-Guitrón, L., Cerón-Montes, G., Olvera-Contreras B, & Salinas-Pérez, F. (2014). Contenido proteico en larvas de Tenebrio molitor L. alimentadas con diferentes sustratos. Universo de la Tecnologia. https://biblat.unam.mx/hevila/Universodelatecnologica/2014/no18/4.pdfCho, K. H., Sampath, V., Kim, A. J., Yoo, J. S., & Kim, I. H. (2023). Evaluation of full-fatted and hydrolysate mealworm (Tenebrio molitor) larvae as a substitute for spray-dried plasma protein diet in weaning pigs. Journal of Animal Physiology and Animal Nutrition, 107(2), 589-597. https://doi.org/10.1111/JPN.13763CODS. (2021). Los retos de la agricultura colombiana frente al cambio climático - CODS. Centro de los objetivos de desarrollo sostenible para America Latina. https://cods.uniandes.edu.co/los-retos-de-la-agricultura-colombiana-frente-al-cambio-climatico/Coutinho, F., Castro, C., Guerreiro, I., Rangel, F., Couto, A., Serra, C. R., Peres, H., Pousão-Ferreira, P., Rawski, M., Oliva-Teles, A., & Enes, P. (2021). Mealworm larvae meal in diets for meagre juveniles: Growth, nutrient digestibility and digestive enzymes activity. Aquaculture, 535, 736362. https://doi.org/10.1016/J.AQUACULTURE.2021.736362Cozma, A., Andrei, S., Pintea, A., Miere, D., Filip, L., Loghin, F., & Ferlay, A. (2015). Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, cholesterol, and vitamin A concentrations in Carpathian goats. http://agriculturejournals.cz/doi/10.17221/8275-CJAS.html, 60(7), 289-301. https://doi.org/10.17221/8275-CJASDalmoro, Y. K., Adams, C. B., Haetinger, V. S., Bairros, L., Yacoubi, N., & Stefanello, C. (2021). Energy values of Tenebrio molitor larvae meal and tilapia byproduct meal for broiler chickens determined using the regression method. Animal Feed Science and Technology, 272, 114784. https://doi.org/10.1016/J.ANIFEEDSCI.2020.114784Deruytter, D., & Coudron, C. L. (2021). The effects of density on the growth, survival and feed conversion of Tenebrio molitor larvae. https://doi.org/10.3920/JIFF2021.0057, 8(2), 141-146. https://doi.org/10.3920/JIFF2021.0057Dreyer, M., Hörtenhuber, S., Zollitsch, W., Jäger, H., Schaden, L. M., Gronauer, A., & Kral, I. (2021). Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria – a comparison of mealworm and broiler as protein source. International Journal of Life Cycle Assessment, 26(11), 2232-2247. https://doi.org/10.1007/S11367-021-01980-4/FIGURES/7Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492, 24-34. https://doi.org/10.1016/J.AQUACULTURE.2018.03.038Dupriez, F., Rejasse, A., Rios, A., Lefebvre, T., & Nielsen‐leroux, C. (2022). Impact and Persistence of Serratia marcescens in Tenebrio molitor Larvae and Feed under Optimal and Stressed Mass Rearing Conditions. Insects 2022, Vol. 13, Page 458, 13(5), 458. https://doi.org/10.3390/INSECTS13050458Elahi, U., Wang, J., Ma, Y. B., Wu, S. G., Wu, J., Qi, G. H., & Zhang, H. J. (2020). Evaluation of Yellow Mealworm Meal as a Protein Feedstuff in the Diet of Broiler Chicks. Animals 2020, Vol. 10, Page 224, 10(2), 224. https://doi.org/10.3390/ANI10020224FAO. (2013). La contribución de Los insectos a La seguridad aLimentaria, Los medios de vida y eL medio ambiente 1 ¿Qué es La entomofagia? www.fao.org/forestry/edibleinsects/en/FAO. (2022). Marco estratégico de la FAO. FAO. https://www.fao.org/strategic-framework/esFarooq, M., & Pisante, M. (2019). Innovations in sustainable agriculture. Innovations in Sustainable Agriculture, 1-627. https://doi.org/10.1007/978-3-030-23169-9/COVERFinke, M. D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21(3), 269-285. https://doi.org/10.1002/ZOO.10031Fontes, T. V., de Oliveira, K. R. B., Almeida, I. L. G., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & E Rosa, P. V. (2019). Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals 2019, Vol. 9, Page 181, 9(4), 181. https://doi.org/10.3390/ANI9040181Fukase, E., & Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Development, 132, 104954. https://doi.org/10.1016/J.WORLDDEV.2020.104954Ghaly, A. E., & Alkoaik, F. N. (2009). The yellow mealworm as a novel source of protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331.Ghosh, S., Lee, S. M., Jung, C., & Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20(2), 686-694. https://doi.org/10.1016/J.ASPEN.2017.04.003Gkinali, A. A., Matsakidou, A., Vasileiou, E., & Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science & Technology, 119, 495-507. https://doi.org/10.1016/J.TIFS.2021.11.024Heckmann, L. H., Andersen, J. L., Gianotten, N., Calis, M., Fischer, C. H., & Calis, H. (2018). Sustainable mealworm production for feed and food. Edible Insects in Sustainable Food Systems, 321-328. https://doi.org/10.1007/978-3-319-74011-9_19/COVERHeuzé, V., & Tran, G. (2015). Rice Bran and Other Rice By-Products. INRAE, CIRAD, AFZ and FAO.Heuzé, V., Tran, G., & Lebas, F. (2016). Maize Cobs. INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/718Janssen, R. H., Vincken, J. P., Van Den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. https://doi.org/10.1021/ACS.JAFC.7B00471/ASSET/IMAGES/LARGE/JF-2017-00471Z_0001.JPEGJensen, K., Kristensen, T. N., Heckmann, L.-H. L., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. Insects as food and feed: from production to consumption, 174-198. https://doi.org/10.3920/978-90-8686-849-0Khanal, P., Pandey, D., Næss, G., Cabrita, A. R. J., Fonseca, A. J. M., Maia, M. R. G., Timilsina, B., Veldkamp, T., Sapkota, R., & Overrein, H. (2023). Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. Journal of Cleaner Production, 389, 136104. https://doi.org/10.1016/J.JCLEPRO.2023.136104Kröncke, N., & Benning, R. (2023). Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects, 14(3), 261. https://doi.org/10.3390/INSECTS14030261/S1Kröncke, N., Wittke, S., Steinmann, N., & Benning, R. (2023). Analysis of the Composition of Different Instars of Tenebrio molitor Larvae using Near-Infrared Reflectance Spectroscopy for Prediction of Amino and Fatty Acid Content. 14, 310. https://doi.org/10.3390/insects14040310Li, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92(1), 103-109. https://doi.org/10.1016/J.ACTAASTRO.2012.03.012Liu, Z., Minor, M., Morel, P. C. H., & Najar-Rodriguez, A. J. (2018). Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environmental Entomology, 47(6), 1609-1617. https://doi.org/10.1093/ee/nvy141Lock, E. J., Biancarosa, I., & Gasco, L. (2018). Insects as raw materials in compound feed for aquaculture. Edible Insects in Sustainable Food Systems, 263-276. https://doi.org/10.1007/978-3-319-74011-9_16/COVERMakkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. https://doi.org/10.1016/J.ANIFEEDSCI.2014.07.008Mamuad, L., Lee, S. H., Jeong, C. D., Ramos, S., Miguel, M., Son, A. R., Kim, S. H., Cho, Y. Il, & Lee, S. S. (2021). Ornamental fish, Cyprinus carpio, fed with fishmeal replacement Ptecticus tenebrifer and Tenebrio molitor. Aquaculture Research, 52(3), 980-990. https://doi.org/10.1111/ARE.14953Mandrile, L., Fusaro, I., Amato, G., Marchis, D., Martra, G., & Rossi, A. M. (2018). Detection of insect’s meal in compound feed by Near Infrared spectral imaging. Food Chemistry, 267, 240-245. https://doi.org/10.1016/J.FOODCHEM.2018.01.127Medina Roa, J. (2017). Tunja, Ciudad que emerge | La Red Cultural del Banco de la República. Banrepcultural. https://www.banrepcultural.org/biblioteca-virtual/credencial-historia-no-237/tunja-ciudad-que-emergeMeireles, E. A., Carneiro, C. N. B., DaMatta, R. A., Samuels, R. I., & Silva, C. P. (2009). Digestion of starch granules from maize, potato and wheat by larvae of the the yellow mealworm, tenebrio molitor and the Mexican bean weevil, Zabrotes subfasciatus. Journal of Insect Science, 9(1), 1536-2442. https://doi.org/10.1673/031.009.4301/895407Miglietta, P. P., De Leo, F., Ruberti, M., & Massari, S. (2015). Mealworms for Food: A Water Footprint Perspective. Water 2015, Vol. 7, Pages 6190-6203, 7(11), 6190-6203. https://doi.org/10.3390/W7116190Morales-Ramos, J. A., Rojas, M. G., Shapiro-Llan, D. I., & Tedders, W. L. (2013). Use of Nutrient Self-Selection as a Diet Refining Tool in Tenebrio molitor (Coleoptera: Tenebrionidae). https://doi.org/10.18474/0749-8004-48.3.206, 48(3), 206-221. https://doi.org/10.18474/0749-8004-48.3.206Ng, W. K. (2001). Potential of mealworm (Tenebrio molifor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research, 32(SUPPL. 1), 273-280. https://doi.org/10.1046/J.1355-557X.2001.00024.XNowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39-46. https://doi.org/10.1016/J.FOODCHEM.2014.10.114Nyanzira, A., Machona, O., Matongorere, M., Chidzwondo, F., & Mangoyi, R. (2023). Analysis of Frass Excreted by Tenebrio molitor for Use as Fertilizer. Entomology and Applied Science Letters, 10(1), 29-37. https://doi.org/10.51847/XBW1OOFQXNOonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental Impact of the Production of Mealworms as a Protein Source for Humans – A Life Cycle Assessment. PLOS ONE, 7(12), e51145. https://doi.org/10.1371/JOURNAL.PONE.0051145Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLOS ONE, 10(12), e0144601. https://doi.org/10.1371/JOURNAL.PONE.0144601Oonincx, D. G. A. B., van Itterbeeck, J., Heetkamp, M. J. W., van den Brand, H., van Loon, J. J. A., & van Huis, A. (2010). An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLOS ONE, 5(12), e14445. https://doi.org/10.1371/JOURNAL.PONE.0014445Paul, A., Frederich, M., Megido, R. C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G., & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/10.1016/j.aspen.2017.02.001Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. https://doi.org/10.1016/J.ANIFEEDSCI.2017.02.007Poveda, J. (2021). Insect frass in the development of sustainable agriculture. A review. https://doi.org/10.1007/s13593-020-00656-x/PublishedPoveda, J., Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui-Martín, R., Rivas, R., & García-Fraile, P. (2019). Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Applied Soil Ecology, 142, 110-122. https://doi.org/10.1016/J.APSOIL.2019.04.016Prokkola, J., Roff, D., Kärkkäinen, T., Krams, I., & Rantala, M. J. (2013). Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor. Heredity, 111(2), 89-96. https://doi.org/10.1038/HDY.2013.20Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256, 113265. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113265R software. (2023). R: The R Project for Statistical Computing. R Project for Statistical Computing. https://www.r-project.org/Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal of Economic Entomology, 95(1), 214-220. https://doi.org/10.1603/0022-0493-95.1.214Ratcliffe, N., Azambuja, P., & Mello, C. B. (2014). Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines. Evidence-based Complementary and Alternative Medicine : eCAM, 2014. https://doi.org/10.1155/2014/904958Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2020). Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes 2020, Vol. 8, Page 857, 8(7), 857. https://doi.org/10.3390/PR8070857Ravzanaadii, N., Kim, S.-H., Choi, W.-H., Hong, S.-J., & Kim, N.-J. (2012). Nutritional Value of Mealworm, Tenebrio molitor as Food Source. International Journal of Industrial Entomology, 25(1), 93-98. https://doi.org/10.7852/IJIE.2012.25.1.093Remiro, A., Remón, S., & Fondevila, M. (2021). Alimentación de larvas de tenebrio molitor con subproducto de pan y ensilado de maíz en sustitución de trigo y salvado. XIX Jornadas sobre Producción Animal, 92. https://www.aida-itea.org/aida-itea/files/jornadas/2021/comunicaciones/2021_NyA_54.pdfRumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5), 802-823. https://doi.org/10.1002/MNFR.201200735Rumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/J.IFSET.2012.11.005Ruschioni, S., Loreto, N., Foligni, R., Mannozzi, C., Raffaelli, N., Zamporlini, F., Pasquini, M., Roncolini, A., Cardinali, F., Osimani, A., Aquilanti, L., Isidoro, N., Riolo, P., & Mozzon, M. (2020). Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio Molitor L.) Larvae. Foods 2020, Vol. 9, Page 317, 9(3), 317. https://doi.org/10.3390/FOODS9030317Shahzad, A. (2011). Hemp fiber and its composites – a review. http://dx.doi.org/10.1177/0021998311413623, 46(8), 973-986. https://doi.org/10.1177/0021998311413623Sideris, V., Georgiadou, M., Papadoulis, G., Mountzouris, K., & Tsagkarakis, A. (2021). Effect of Processed Beverage By-Product-Based Diets on Biological Parameters, Conversion Efficiency and Body Composition of Hermetia illucens (L) (Diptera: Stratiomyidae). Insects 2021, Vol. 12, Page 475, 12(5), 475. https://doi.org/10.3390/INSECTS12050475Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. 4(6), 287-291. https://doi.org/10.4236/as.2013.46041Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 1-14. https://doi.org/10.1186/S40104-021-00551-9/TABLES/6Toviho, O. A., & Bársony, P. (2022). Nutrient Composition and Growth of Yellow Mealworm (Tenebrio molitor) at Different Ages and Stages of the Life Cycle. Agriculture 2022, Vol. 12, Page 1924, 12(11), 1924. https://doi.org/10.3390/AGRICULTURE12111924Tzompa-Sosa, D. A., Yi, L., van Valenberg, H. J. F., van Boekel, M. A. J. S., & Lakemond, C. M. M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087-1094. https://doi.org/10.1016/J.FOODRES.2014.05.052UN. (2023). Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. https://sdgs.un.org/2030agendaUrrejola, S., Nespolo, R., & Lardies, M. A. (2011). Diet-induced developmental plasticity in life histories and energy metabolism in a beetle. Revista chilena de historia natural, 84(4), 523-533. https://doi.org/10.4067/S0716-078X2011000400005van Broekhoven, S., Oonincx, D. G. A. B., van Huis, A., & van Loon, J. J. A. (2015). Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73, 1-10. https://doi.org/10.1016/J.JINSPHYS.2014.12.005Veldkamp, T., & Bosch, G. (2015). Insects: A protein-rich feed ingredient in pig and poultry diets. Animal Frontiers, 5(2), 45-50. https://doi.org/10.2527/AF.2015-0019Veldkamp, T., Duinkerken, G. van, Huis, A. van, Lakemond, C. M. M., Ottevanger, E., Bosch, G., & Boekel, T. van. (2012). Insects as a sustainable feed ingredient in pig and poultry diets : a feasibility study = Insecten als duurzame diervoedergrondstof in varkens- en pluimveevoeders : een haalbaarheidsstudie. http://www.livestockresearch.wur.nlYakti, W., Förster, N., Müller, M., Mewis, I., & Ulrichs, C. (2023). Hemp Waste as a Substrate for Hermetia illucens (L.) (Diptera: Stratiomyidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) Rearing. Insects 2023, Vol. 14, Page 183, 14(2), 183. https://doi.org/10.3390/INSECTS14020183Yakti, W., Müller, M., Klost, M., Mewis, I., Dannehl, D., & Ulrichs, C. (2023). Physical Properties of Substrates as a Driver for Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae Growth. Insects 2023, Vol. 14, Page 266, 14(3), 266. https://doi.org/10.3390/INSECTS14030266Zhang, Q., Hou, Y., Bazer, F. W., He, W., Posey, E. A., & Wu, G. (2021). Amino Acids in Swine Nutrition and Production. Advances in Experimental Medicine and Biology, 1285, 81-107. https://doi.org/10.1007/978-3-030-54462-1_6Zhang, X., Tang, H., Chen, G., Qiao, L., Li, J., Liu, B., Liu, Z., Li, M., & Liu, X. (2019). Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. European Food Research and Technology, 245(12), 2631-2640. https://doi.org/10.1007/S00217-019-03336-7Zhao, X., Vázquez-Gutiérrez, J. L., Johansson, D. P., Landberg, R., & Langton, M. (2016). Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLOS ONE, 11(2), e0147791. https://doi.org/10.1371/JOURNAL.PONE.0147791Tenebrio molitorProductos agrícolas - almacenamiento - Enfermedades y dañosPlagas de alimentos almacenadosEconomía circularTenebrionidosHarina de insectoAlimento alternativoBioconversiónProducción sostenibleProteínaFacultad de Ciencias AgropecuariasTunjaMedicina Veterinaria y ZootecniaspaPúblico generalORIGINALEvaluacion_parametros_productivos.pdfEvaluacion_parametros_productivos.pdfArchivo principalapplication/pdf1956722https://repositorio.uptc.edu.co/bitstreams/ceaaf750-a4b0-405c-98fc-ca85468cb33d/downloade4ed2b366ff2af6068393db47c867eb7MD51A_DLSG.pdfA_DLSG.pdfAutorización publicaciónapplication/pdf891607https://repositorio.uptc.edu.co/bitstreams/e20573d2-4ce0-49be-9e7e-96dcddea1d85/downloaded0c435b2ecc95aa50702d0e1b65a78fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uptc.edu.co/bitstreams/8706afc9-08dd-4466-a21f-39a76d46c474/download8a4605be74aa9ea9d79846c1fba20a33MD53TEXTEvaluacion_parametros_productivos.pdf.txtEvaluacion_parametros_productivos.pdf.txtExtracted texttext/plain104928https://repositorio.uptc.edu.co/bitstreams/bede1df1-d563-4f40-9f4d-7081ad7b375f/download5bbed92f44e40d1897fa595113472169MD54A_DLSG.pdf.txtA_DLSG.pdf.txtExtracted texttext/plain2https://repositorio.uptc.edu.co/bitstreams/5a11c135-60c1-47db-8ca5-2d8fbdf5d159/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56THUMBNAILEvaluacion_parametros_productivos.pdf.jpgEvaluacion_parametros_productivos.pdf.jpgGenerated Thumbnailimage/jpeg3100https://repositorio.uptc.edu.co/bitstreams/ea14b769-4161-4a61-8ef9-9c54986b29cb/downloaddb07a4f1921560cd499a42b3cebc103aMD55A_DLSG.pdf.jpgA_DLSG.pdf.jpgGenerated Thumbnailimage/jpeg5505https://repositorio.uptc.edu.co/bitstreams/39270948-31cd-442c-a16c-7c0fa863ba04/downloadc626c1b2938041fd840f516e81506392MD57001/9514oai:repositorio.uptc.edu.co:001/95142024-02-22 07:31:36.682https://creativecommons.org/licenses/by/4.0/Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombiaopen.accesshttps://repositorio.uptc.edu.coUPTC DSpacerepositorio.uptc@uptc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=