Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos
Spa: La presente investigación tuvo como objetivo evaluar el efecto de diferentes sustratos en los parámetros productivos y nutricionales de las larvas de Tenebrio molitor. El proyecto se llevó a cabo en las instalaciones de la sede central de la Universidad Pedagógica y Tecnológica de Colombia, en...
- Autores:
-
Sanabria García, David Leonardo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/9514
- Acceso en línea:
- https://repositorio.uptc.edu.co//handle/001/9514
- Palabra clave:
- Tenebrio molitor
Productos agrícolas - almacenamiento - Enfermedades y daños
Plagas de alimentos almacenados
Economía circular
Tenebrionidos
Harina de insecto
Alimento alternativo
Bioconversión
Producción sostenible
Proteína
- Rights
- openAccess
- License
- Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombia
id |
REPOUPTC2_b6acb4f48425b9772168bd0909958b34 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/9514 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.en_US.fl_str_mv |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos |
title |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos |
spellingShingle |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos Tenebrio molitor Productos agrícolas - almacenamiento - Enfermedades y daños Plagas de alimentos almacenados Economía circular Tenebrionidos Harina de insecto Alimento alternativo Bioconversión Producción sostenible Proteína |
title_short |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos |
title_full |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos |
title_fullStr |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos |
title_full_unstemmed |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos |
title_sort |
Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos |
dc.creator.fl_str_mv |
Sanabria García, David Leonardo |
dc.contributor.advisor.none.fl_str_mv |
Rodríguez Molano, Carlos Eduardo |
dc.contributor.author.none.fl_str_mv |
Sanabria García, David Leonardo |
dc.subject.armarc.en_US.fl_str_mv |
Tenebrio molitor Productos agrícolas - almacenamiento - Enfermedades y daños Plagas de alimentos almacenados Economía circular Tenebrionidos |
topic |
Tenebrio molitor Productos agrícolas - almacenamiento - Enfermedades y daños Plagas de alimentos almacenados Economía circular Tenebrionidos Harina de insecto Alimento alternativo Bioconversión Producción sostenible Proteína |
dc.subject.proposal.en_US.fl_str_mv |
Harina de insecto Alimento alternativo Bioconversión Producción sostenible Proteína |
description |
Spa: La presente investigación tuvo como objetivo evaluar el efecto de diferentes sustratos en los parámetros productivos y nutricionales de las larvas de Tenebrio molitor. El proyecto se llevó a cabo en las instalaciones de la sede central de la Universidad Pedagógica y Tecnológica de Colombia, en la ciudad de Tunja, en el departamento de Boyacá, con una temperatura media de 13º C y una altitud de 2775 m.s.n.m. Durante las fases experimentales, las larvas de T. molitor se criaron en condiciones ambientales controladas (27±2 °C con una humedad relativa del 60-70%), de acuerdo con las recomendaciones para la cría de la especie. El proceso de alimentación duró un período de 5 meses. Las variables de desempeño productivo evaluadas fueron la ganancia de peso, la tasa de crecimiento y la densidad. En cuanto al desempeño nutricional, se evaluaron la materia seca, la proteína, las cenizas y el extracto etéreo. Se utilizó un diseño completamente al azar con cuatro tratamientos más un control. Cada tratamiento tuvo tres réplicas, para un total de 15 unidades experimentales. Se encontraron diferencias significativas en cuanto a la densidad, siendo mayor en el tratamiento con harina de trigo (2.25 larvas/cm3) y con la supervivencia más baja (87%), en comparación con el tratamiento con harina de soya (0.2 larvas/cm3) y una supervivencia del 99%. El nivel de proteína fue mayor en las larvas criadas en el tratamiento con avena en hojuelas (42.7±0.47a). En cuanto al desempeño nutricional de los demás parámetros evaluados, no se encontraron efectos diferenciales entre los diferentes tratamientos, excepto en el contenido de cenizas de las larvas alimentadas con harina de soya (7.3%±0.19). |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-02-21T14:45:02Z |
dc.date.available.none.fl_str_mv |
2024-02-21T14:45:02Z |
dc.type.en_US.fl_str_mv |
Trabajo de grado pregrados |
dc.type.coar.en_US.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.en_US.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.en_US.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.en_US.fl_str_mv |
Text |
dc.type.redcol.en_US.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.coarversion.en_US.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.citation.en_US.fl_str_mv |
Sanabria García, D. L. (2023). Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ciencias Agrarias, Tunja. https://repositorio.uptc.edu.co//handle/001/9514 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co//handle/001/9514 |
identifier_str_mv |
Sanabria García, D. L. (2023). Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ciencias Agrarias, Tunja. https://repositorio.uptc.edu.co//handle/001/9514 |
url |
https://repositorio.uptc.edu.co//handle/001/9514 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.en_US.fl_str_mv |
Adhikari, P., Aryal, N., Ghimire, A., & Khanal, P. (2021). Sustainable biowaste recycling using insects. Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume 1, 399-420. https://doi.org/10.1016/B978-0-323-85223-4.00007-5 Afzal, A., & Asad, S. A. (2019). Microbial applications for sustainable agriculture. Innovations in Sustainable Agriculture, 43-77. https://doi.org/10.1007/978-3-030-23169-9_3 Aguilar-Miranda, E. D., Lopez, M. G., Escamilla-Santana, C., & Barba de la Rosa, A. P. (2001). Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. Journal of Agricultural and Food Chemistry, 50(1), 192-195. https://doi.org/10.1021/JF010691Y Ahmad, F., Singh, A., & Kamal, A. (2019). Salicylic Acid–Mediated Defense Mechanisms to Abiotic Stress Tolerance. Plant Signaling Molecules: Role and Regulation under Stressful Environments, 355-369. https://doi.org/10.1016/B978-0-12-816451-8.00022-8 Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133-140. https://doi.org/10.1007/S11625-006-0013-6/TABLES/1 Andreadis, S. S., Panteli, N., Mastoraki, M., Rizou, E., Stefanou, V., Tzentilasvili, S., Sarrou, E., Chatzifotis, S., Krigas, N., & Antonopoulou, E. (2022). Towards functional insect feeds: Agri-food by-products enriched with post-distillation residues of medicinal aromatic plants in tenebrio molitor (coleoptera: Tenebrionidae) breeding. Antioxidants, 11(1). https://doi.org/10.3390/ANTIOX11010068/S1 Ao, X., Yoo, J. S., Wu, Z. L., & Kim, I. H. (2020). Can dried mealworm (Tenebrio molitor) larvae replace fish meal in weaned pigs? Livestock Science, 239, 104103. https://doi.org/10.1016/J.LIVSCI.2020.104103 AOAC. (2001). Determination of Total Nitrogen. Current Protocols in Food Analytical Chemistry, 00(1), B1.2.1-B1.2.9. https://doi.org/10.1002/0471142913.FAB0102S00 Applebaum, S. W. (1966). Digestion of Potato Starch by Larvae of the Flour Beetle, Tribolium castaneum. The Journal of Nutrition, 90(3), 235-239. https://doi.org/10.1093/JN/90.3.235 Arias, J. P. (2018). Nuevos abonos a partir de excrementos de insecto: el caso del gusano de la harina (Tenebrio molitor). Ingeniería y Región, 19, 1-10. https://doi.org/10.25054/22161325.1840 Baiano, A. (2020). Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology, 100, 35-50. https://doi.org/10.1016/J.TIFS.2020.03.040 Benzertiha, A., Kierończyk, B., Kołodziejski, P., Pruszyńska–Oszmałek, E., Rawski, M., Józefiak, D., & Józefiak, A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science, 99(1), 196-206. https://doi.org/10.3382/PS/PEZ450 Bordiean, A., Krzyżaniak, M., Aljewicz, M., & Stolarski, M. J. (2022). Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, Vol. 11, Page 3075, 11(19), 3075. https://doi.org/10.3390/FOODS11193075 Chávez-Guitrón, L., Cerón-Montes, G., Olvera-Contreras B, & Salinas-Pérez, F. (2014). Contenido proteico en larvas de Tenebrio molitor L. alimentadas con diferentes sustratos. Universo de la Tecnologia. https://biblat.unam.mx/hevila/Universodelatecnologica/2014/no18/4.pdf Cho, K. H., Sampath, V., Kim, A. J., Yoo, J. S., & Kim, I. H. (2023). Evaluation of full-fatted and hydrolysate mealworm (Tenebrio molitor) larvae as a substitute for spray-dried plasma protein diet in weaning pigs. Journal of Animal Physiology and Animal Nutrition, 107(2), 589-597. https://doi.org/10.1111/JPN.13763 CODS. (2021). Los retos de la agricultura colombiana frente al cambio climático - CODS. Centro de los objetivos de desarrollo sostenible para America Latina. https://cods.uniandes.edu.co/los-retos-de-la-agricultura-colombiana-frente-al-cambio-climatico/ Coutinho, F., Castro, C., Guerreiro, I., Rangel, F., Couto, A., Serra, C. R., Peres, H., Pousão-Ferreira, P., Rawski, M., Oliva-Teles, A., & Enes, P. (2021). Mealworm larvae meal in diets for meagre juveniles: Growth, nutrient digestibility and digestive enzymes activity. Aquaculture, 535, 736362. https://doi.org/10.1016/J.AQUACULTURE.2021.736362 Cozma, A., Andrei, S., Pintea, A., Miere, D., Filip, L., Loghin, F., & Ferlay, A. (2015). Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, cholesterol, and vitamin A concentrations in Carpathian goats. http://agriculturejournals.cz/doi/10.17221/8275-CJAS.html, 60(7), 289-301. https://doi.org/10.17221/8275-CJAS Dalmoro, Y. K., Adams, C. B., Haetinger, V. S., Bairros, L., Yacoubi, N., & Stefanello, C. (2021). Energy values of Tenebrio molitor larvae meal and tilapia byproduct meal for broiler chickens determined using the regression method. Animal Feed Science and Technology, 272, 114784. https://doi.org/10.1016/J.ANIFEEDSCI.2020.114784 Deruytter, D., & Coudron, C. L. (2021). The effects of density on the growth, survival and feed conversion of Tenebrio molitor larvae. https://doi.org/10.3920/JIFF2021.0057, 8(2), 141-146. https://doi.org/10.3920/JIFF2021.0057 Dreyer, M., Hörtenhuber, S., Zollitsch, W., Jäger, H., Schaden, L. M., Gronauer, A., & Kral, I. (2021). Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria – a comparison of mealworm and broiler as protein source. International Journal of Life Cycle Assessment, 26(11), 2232-2247. https://doi.org/10.1007/S11367-021-01980-4/FIGURES/7 Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492, 24-34. https://doi.org/10.1016/J.AQUACULTURE.2018.03.038 Dupriez, F., Rejasse, A., Rios, A., Lefebvre, T., & Nielsen‐leroux, C. (2022). Impact and Persistence of Serratia marcescens in Tenebrio molitor Larvae and Feed under Optimal and Stressed Mass Rearing Conditions. Insects 2022, Vol. 13, Page 458, 13(5), 458. https://doi.org/10.3390/INSECTS13050458 Elahi, U., Wang, J., Ma, Y. B., Wu, S. G., Wu, J., Qi, G. H., & Zhang, H. J. (2020). Evaluation of Yellow Mealworm Meal as a Protein Feedstuff in the Diet of Broiler Chicks. Animals 2020, Vol. 10, Page 224, 10(2), 224. https://doi.org/10.3390/ANI10020224 FAO. (2013). La contribución de Los insectos a La seguridad aLimentaria, Los medios de vida y eL medio ambiente 1 ¿Qué es La entomofagia? www.fao.org/forestry/edibleinsects/en/ FAO. (2022). Marco estratégico de la FAO. FAO. https://www.fao.org/strategic-framework/es Farooq, M., & Pisante, M. (2019). Innovations in sustainable agriculture. Innovations in Sustainable Agriculture, 1-627. https://doi.org/10.1007/978-3-030-23169-9/COVER Finke, M. D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21(3), 269-285. https://doi.org/10.1002/ZOO.10031 Fontes, T. V., de Oliveira, K. R. B., Almeida, I. L. G., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & E Rosa, P. V. (2019). Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals 2019, Vol. 9, Page 181, 9(4), 181. https://doi.org/10.3390/ANI9040181 Fukase, E., & Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Development, 132, 104954. https://doi.org/10.1016/J.WORLDDEV.2020.104954 Ghaly, A. E., & Alkoaik, F. N. (2009). The yellow mealworm as a novel source of protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331. Ghosh, S., Lee, S. M., Jung, C., & Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20(2), 686-694. https://doi.org/10.1016/J.ASPEN.2017.04.003 Gkinali, A. A., Matsakidou, A., Vasileiou, E., & Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science & Technology, 119, 495-507. https://doi.org/10.1016/J.TIFS.2021.11.024 Heckmann, L. H., Andersen, J. L., Gianotten, N., Calis, M., Fischer, C. H., & Calis, H. (2018). Sustainable mealworm production for feed and food. Edible Insects in Sustainable Food Systems, 321-328. https://doi.org/10.1007/978-3-319-74011-9_19/COVER Heuzé, V., & Tran, G. (2015). Rice Bran and Other Rice By-Products. INRAE, CIRAD, AFZ and FAO. Heuzé, V., Tran, G., & Lebas, F. (2016). Maize Cobs. INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/718 Janssen, R. H., Vincken, J. P., Van Den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. https://doi.org/10.1021/ACS.JAFC.7B00471/ASSET/IMAGES/LARGE/JF-2017-00471Z_0001.JPEG Jensen, K., Kristensen, T. N., Heckmann, L.-H. L., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. Insects as food and feed: from production to consumption, 174-198. https://doi.org/10.3920/978-90-8686-849-0 Khanal, P., Pandey, D., Næss, G., Cabrita, A. R. J., Fonseca, A. J. M., Maia, M. R. G., Timilsina, B., Veldkamp, T., Sapkota, R., & Overrein, H. (2023). Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. Journal of Cleaner Production, 389, 136104. https://doi.org/10.1016/J.JCLEPRO.2023.136104 Kröncke, N., & Benning, R. (2023). Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects, 14(3), 261. https://doi.org/10.3390/INSECTS14030261/S1 Kröncke, N., Wittke, S., Steinmann, N., & Benning, R. (2023). Analysis of the Composition of Different Instars of Tenebrio molitor Larvae using Near-Infrared Reflectance Spectroscopy for Prediction of Amino and Fatty Acid Content. 14, 310. https://doi.org/10.3390/insects14040310 Li, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92(1), 103-109. https://doi.org/10.1016/J.ACTAASTRO.2012.03.012 Liu, Z., Minor, M., Morel, P. C. H., & Najar-Rodriguez, A. J. (2018). Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environmental Entomology, 47(6), 1609-1617. https://doi.org/10.1093/ee/nvy141 Lock, E. J., Biancarosa, I., & Gasco, L. (2018). Insects as raw materials in compound feed for aquaculture. Edible Insects in Sustainable Food Systems, 263-276. https://doi.org/10.1007/978-3-319-74011-9_16/COVER Makkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. https://doi.org/10.1016/J.ANIFEEDSCI.2014.07.008 Mamuad, L., Lee, S. H., Jeong, C. D., Ramos, S., Miguel, M., Son, A. R., Kim, S. H., Cho, Y. Il, & Lee, S. S. (2021). Ornamental fish, Cyprinus carpio, fed with fishmeal replacement Ptecticus tenebrifer and Tenebrio molitor. Aquaculture Research, 52(3), 980-990. https://doi.org/10.1111/ARE.14953 Mandrile, L., Fusaro, I., Amato, G., Marchis, D., Martra, G., & Rossi, A. M. (2018). Detection of insect’s meal in compound feed by Near Infrared spectral imaging. Food Chemistry, 267, 240-245. https://doi.org/10.1016/J.FOODCHEM.2018.01.127 Medina Roa, J. (2017). Tunja, Ciudad que emerge | La Red Cultural del Banco de la República. Banrepcultural. https://www.banrepcultural.org/biblioteca-virtual/credencial-historia-no-237/tunja-ciudad-que-emerge Meireles, E. A., Carneiro, C. N. B., DaMatta, R. A., Samuels, R. I., & Silva, C. P. (2009). Digestion of starch granules from maize, potato and wheat by larvae of the the yellow mealworm, tenebrio molitor and the Mexican bean weevil, Zabrotes subfasciatus. Journal of Insect Science, 9(1), 1536-2442. https://doi.org/10.1673/031.009.4301/895407 Miglietta, P. P., De Leo, F., Ruberti, M., & Massari, S. (2015). Mealworms for Food: A Water Footprint Perspective. Water 2015, Vol. 7, Pages 6190-6203, 7(11), 6190-6203. https://doi.org/10.3390/W7116190 Morales-Ramos, J. A., Rojas, M. G., Shapiro-Llan, D. I., & Tedders, W. L. (2013). Use of Nutrient Self-Selection as a Diet Refining Tool in Tenebrio molitor (Coleoptera: Tenebrionidae). https://doi.org/10.18474/0749-8004-48.3.206, 48(3), 206-221. https://doi.org/10.18474/0749-8004-48.3.206 Ng, W. K. (2001). Potential of mealworm (Tenebrio molifor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research, 32(SUPPL. 1), 273-280. https://doi.org/10.1046/J.1355-557X.2001.00024.X Nowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39-46. https://doi.org/10.1016/J.FOODCHEM.2014.10.114 Nyanzira, A., Machona, O., Matongorere, M., Chidzwondo, F., & Mangoyi, R. (2023). Analysis of Frass Excreted by Tenebrio molitor for Use as Fertilizer. Entomology and Applied Science Letters, 10(1), 29-37. https://doi.org/10.51847/XBW1OOFQXN Oonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental Impact of the Production of Mealworms as a Protein Source for Humans – A Life Cycle Assessment. PLOS ONE, 7(12), e51145. https://doi.org/10.1371/JOURNAL.PONE.0051145 Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLOS ONE, 10(12), e0144601. https://doi.org/10.1371/JOURNAL.PONE.0144601 Oonincx, D. G. A. B., van Itterbeeck, J., Heetkamp, M. J. W., van den Brand, H., van Loon, J. J. A., & van Huis, A. (2010). An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLOS ONE, 5(12), e14445. https://doi.org/10.1371/JOURNAL.PONE.0014445 Paul, A., Frederich, M., Megido, R. C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G., & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/10.1016/j.aspen.2017.02.001 Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. https://doi.org/10.1016/J.ANIFEEDSCI.2017.02.007 Poveda, J. (2021). Insect frass in the development of sustainable agriculture. A review. https://doi.org/10.1007/s13593-020-00656-x/Published Poveda, J., Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui-Martín, R., Rivas, R., & García-Fraile, P. (2019). Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Applied Soil Ecology, 142, 110-122. https://doi.org/10.1016/J.APSOIL.2019.04.016 Prokkola, J., Roff, D., Kärkkäinen, T., Krams, I., & Rantala, M. J. (2013). Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor. Heredity, 111(2), 89-96. https://doi.org/10.1038/HDY.2013.20 Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256, 113265. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113265 R software. (2023). R: The R Project for Statistical Computing. R Project for Statistical Computing. https://www.r-project.org/ Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal of Economic Entomology, 95(1), 214-220. https://doi.org/10.1603/0022-0493-95.1.214 Ratcliffe, N., Azambuja, P., & Mello, C. B. (2014). Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines. Evidence-based Complementary and Alternative Medicine : eCAM, 2014. https://doi.org/10.1155/2014/904958 Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2020). Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes 2020, Vol. 8, Page 857, 8(7), 857. https://doi.org/10.3390/PR8070857 Ravzanaadii, N., Kim, S.-H., Choi, W.-H., Hong, S.-J., & Kim, N.-J. (2012). Nutritional Value of Mealworm, Tenebrio molitor as Food Source. International Journal of Industrial Entomology, 25(1), 93-98. https://doi.org/10.7852/IJIE.2012.25.1.093 Remiro, A., Remón, S., & Fondevila, M. (2021). Alimentación de larvas de tenebrio molitor con subproducto de pan y ensilado de maíz en sustitución de trigo y salvado. XIX Jornadas sobre Producción Animal, 92. https://www.aida-itea.org/aida-itea/files/jornadas/2021/comunicaciones/2021_NyA_54.pdf Rumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5), 802-823. https://doi.org/10.1002/MNFR.201200735 Rumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/J.IFSET.2012.11.005 Ruschioni, S., Loreto, N., Foligni, R., Mannozzi, C., Raffaelli, N., Zamporlini, F., Pasquini, M., Roncolini, A., Cardinali, F., Osimani, A., Aquilanti, L., Isidoro, N., Riolo, P., & Mozzon, M. (2020). Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio Molitor L.) Larvae. Foods 2020, Vol. 9, Page 317, 9(3), 317. https://doi.org/10.3390/FOODS9030317 Shahzad, A. (2011). Hemp fiber and its composites – a review. http://dx.doi.org/10.1177/0021998311413623, 46(8), 973-986. https://doi.org/10.1177/0021998311413623 Sideris, V., Georgiadou, M., Papadoulis, G., Mountzouris, K., & Tsagkarakis, A. (2021). Effect of Processed Beverage By-Product-Based Diets on Biological Parameters, Conversion Efficiency and Body Composition of Hermetia illucens (L) (Diptera: Stratiomyidae). Insects 2021, Vol. 12, Page 475, 12(5), 475. https://doi.org/10.3390/INSECTS12050475 Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. 4(6), 287-291. https://doi.org/10.4236/as.2013.46041 Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 1-14. https://doi.org/10.1186/S40104-021-00551-9/TABLES/6 Toviho, O. A., & Bársony, P. (2022). Nutrient Composition and Growth of Yellow Mealworm (Tenebrio molitor) at Different Ages and Stages of the Life Cycle. Agriculture 2022, Vol. 12, Page 1924, 12(11), 1924. https://doi.org/10.3390/AGRICULTURE12111924 Tzompa-Sosa, D. A., Yi, L., van Valenberg, H. J. F., van Boekel, M. A. J. S., & Lakemond, C. M. M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087-1094. https://doi.org/10.1016/J.FOODRES.2014.05.052 UN. (2023). Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. https://sdgs.un.org/2030agenda Urrejola, S., Nespolo, R., & Lardies, M. A. (2011). Diet-induced developmental plasticity in life histories and energy metabolism in a beetle. Revista chilena de historia natural, 84(4), 523-533. https://doi.org/10.4067/S0716-078X2011000400005 van Broekhoven, S., Oonincx, D. G. A. B., van Huis, A., & van Loon, J. J. A. (2015). Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73, 1-10. https://doi.org/10.1016/J.JINSPHYS.2014.12.005 Veldkamp, T., & Bosch, G. (2015). Insects: A protein-rich feed ingredient in pig and poultry diets. Animal Frontiers, 5(2), 45-50. https://doi.org/10.2527/AF.2015-0019 Veldkamp, T., Duinkerken, G. van, Huis, A. van, Lakemond, C. M. M., Ottevanger, E., Bosch, G., & Boekel, T. van. (2012). Insects as a sustainable feed ingredient in pig and poultry diets : a feasibility study = Insecten als duurzame diervoedergrondstof in varkens- en pluimveevoeders : een haalbaarheidsstudie. http://www.livestockresearch.wur.nl Yakti, W., Förster, N., Müller, M., Mewis, I., & Ulrichs, C. (2023). Hemp Waste as a Substrate for Hermetia illucens (L.) (Diptera: Stratiomyidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) Rearing. Insects 2023, Vol. 14, Page 183, 14(2), 183. https://doi.org/10.3390/INSECTS14020183 Yakti, W., Müller, M., Klost, M., Mewis, I., Dannehl, D., & Ulrichs, C. (2023). Physical Properties of Substrates as a Driver for Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae Growth. Insects 2023, Vol. 14, Page 266, 14(3), 266. https://doi.org/10.3390/INSECTS14030266 Zhang, Q., Hou, Y., Bazer, F. W., He, W., Posey, E. A., & Wu, G. (2021). Amino Acids in Swine Nutrition and Production. Advances in Experimental Medicine and Biology, 1285, 81-107. https://doi.org/10.1007/978-3-030-54462-1_6 Zhang, X., Tang, H., Chen, G., Qiao, L., Li, J., Liu, B., Liu, Z., Li, M., & Liu, X. (2019). Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. European Food Research and Technology, 245(12), 2631-2640. https://doi.org/10.1007/S00217-019-03336-7 Zhao, X., Vázquez-Gutiérrez, J. L., Johansson, D. P., Landberg, R., & Langton, M. (2016). Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLOS ONE, 11(2), e0147791. https://doi.org/10.1371/JOURNAL.PONE.0147791 |
dc.rights.en_US.fl_str_mv |
Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombia |
dc.rights.uri.en_US.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.en_US.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.en_US.fl_str_mv |
Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.en_US.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombia https://creativecommons.org/licenses/by/4.0/ Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.en_US.fl_str_mv |
1 recurso en línea (páginas sin numeración) : ilustraciones |
dc.format.mimetype.en_US.fl_str_mv |
application/pdf |
dc.publisher.faculty.en_US.fl_str_mv |
Facultad de Ciencias Agropecuarias |
dc.publisher.place.en_US.fl_str_mv |
Tunja |
dc.publisher.program.en_US.fl_str_mv |
Medicina Veterinaria y Zootecnia |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.uptc.edu.co/bitstreams/ceaaf750-a4b0-405c-98fc-ca85468cb33d/download https://repositorio.uptc.edu.co/bitstreams/e20573d2-4ce0-49be-9e7e-96dcddea1d85/download https://repositorio.uptc.edu.co/bitstreams/8706afc9-08dd-4466-a21f-39a76d46c474/download https://repositorio.uptc.edu.co/bitstreams/bede1df1-d563-4f40-9f4d-7081ad7b375f/download https://repositorio.uptc.edu.co/bitstreams/5a11c135-60c1-47db-8ca5-2d8fbdf5d159/download https://repositorio.uptc.edu.co/bitstreams/ea14b769-4161-4a61-8ef9-9c54986b29cb/download https://repositorio.uptc.edu.co/bitstreams/39270948-31cd-442c-a16c-7c0fa863ba04/download |
bitstream.checksum.fl_str_mv |
e4ed2b366ff2af6068393db47c867eb7 ed0c435b2ecc95aa50702d0e1b65a78f 8a4605be74aa9ea9d79846c1fba20a33 5bbed92f44e40d1897fa595113472169 e1c06d85ae7b8b032bef47e42e4c08f9 db07a4f1921560cd499a42b3cebc103a c626c1b2938041fd840f516e81506392 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
UPTC DSpace |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1814076204276252672 |
spelling |
Rodríguez Molano, Carlos EduardoSanabria García, David Leonardo2024-02-21T14:45:02Z2024-02-21T14:45:02Z2023Sanabria García, D. L. (2023). Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratos. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ciencias Agrarias, Tunja. https://repositorio.uptc.edu.co//handle/001/9514https://repositorio.uptc.edu.co//handle/001/9514Spa: La presente investigación tuvo como objetivo evaluar el efecto de diferentes sustratos en los parámetros productivos y nutricionales de las larvas de Tenebrio molitor. El proyecto se llevó a cabo en las instalaciones de la sede central de la Universidad Pedagógica y Tecnológica de Colombia, en la ciudad de Tunja, en el departamento de Boyacá, con una temperatura media de 13º C y una altitud de 2775 m.s.n.m. Durante las fases experimentales, las larvas de T. molitor se criaron en condiciones ambientales controladas (27±2 °C con una humedad relativa del 60-70%), de acuerdo con las recomendaciones para la cría de la especie. El proceso de alimentación duró un período de 5 meses. Las variables de desempeño productivo evaluadas fueron la ganancia de peso, la tasa de crecimiento y la densidad. En cuanto al desempeño nutricional, se evaluaron la materia seca, la proteína, las cenizas y el extracto etéreo. Se utilizó un diseño completamente al azar con cuatro tratamientos más un control. Cada tratamiento tuvo tres réplicas, para un total de 15 unidades experimentales. Se encontraron diferencias significativas en cuanto a la densidad, siendo mayor en el tratamiento con harina de trigo (2.25 larvas/cm3) y con la supervivencia más baja (87%), en comparación con el tratamiento con harina de soya (0.2 larvas/cm3) y una supervivencia del 99%. El nivel de proteína fue mayor en las larvas criadas en el tratamiento con avena en hojuelas (42.7±0.47a). En cuanto al desempeño nutricional de los demás parámetros evaluados, no se encontraron efectos diferenciales entre los diferentes tratamientos, excepto en el contenido de cenizas de las larvas alimentadas con harina de soya (7.3%±0.19).Bibliografía y webgrafía: páginas sin numeraciónPregradoMédico Veterinario y Zootecnista1 recurso en línea (páginas sin numeración) : ilustracionesapplication/pdfCopyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombiahttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Evaluación de parámetros productivos y nutricionales de larvas de Tenebrio Molitor alimentadas con diferentes sustratosTrabajo de grado pregradoshttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Adhikari, P., Aryal, N., Ghimire, A., & Khanal, P. (2021). Sustainable biowaste recycling using insects. Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume 1, 399-420. https://doi.org/10.1016/B978-0-323-85223-4.00007-5 Afzal, A., & Asad, S. A. (2019). Microbial applications for sustainable agriculture. Innovations in Sustainable Agriculture, 43-77. https://doi.org/10.1007/978-3-030-23169-9_3Aguilar-Miranda, E. D., Lopez, M. G., Escamilla-Santana, C., & Barba de la Rosa, A. P. (2001). Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. Journal of Agricultural and Food Chemistry, 50(1), 192-195. https://doi.org/10.1021/JF010691YAhmad, F., Singh, A., & Kamal, A. (2019). Salicylic Acid–Mediated Defense Mechanisms to Abiotic Stress Tolerance. Plant Signaling Molecules: Role and Regulation under Stressful Environments, 355-369. https://doi.org/10.1016/B978-0-12-816451-8.00022-8 Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133-140. https://doi.org/10.1007/S11625-006-0013-6/TABLES/1Andreadis, S. S., Panteli, N., Mastoraki, M., Rizou, E., Stefanou, V., Tzentilasvili, S., Sarrou, E., Chatzifotis, S., Krigas, N., & Antonopoulou, E. (2022). Towards functional insect feeds: Agri-food by-products enriched with post-distillation residues of medicinal aromatic plants in tenebrio molitor (coleoptera: Tenebrionidae) breeding. Antioxidants, 11(1). https://doi.org/10.3390/ANTIOX11010068/S1Ao, X., Yoo, J. S., Wu, Z. L., & Kim, I. H. (2020). Can dried mealworm (Tenebrio molitor) larvae replace fish meal in weaned pigs? Livestock Science, 239, 104103. https://doi.org/10.1016/J.LIVSCI.2020.104103AOAC. (2001). Determination of Total Nitrogen. Current Protocols in Food Analytical Chemistry, 00(1), B1.2.1-B1.2.9. https://doi.org/10.1002/0471142913.FAB0102S00Applebaum, S. W. (1966). Digestion of Potato Starch by Larvae of the Flour Beetle, Tribolium castaneum. The Journal of Nutrition, 90(3), 235-239. https://doi.org/10.1093/JN/90.3.235Arias, J. P. (2018). Nuevos abonos a partir de excrementos de insecto: el caso del gusano de la harina (Tenebrio molitor). Ingeniería y Región, 19, 1-10. https://doi.org/10.25054/22161325.1840Baiano, A. (2020). Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology, 100, 35-50. https://doi.org/10.1016/J.TIFS.2020.03.040Benzertiha, A., Kierończyk, B., Kołodziejski, P., Pruszyńska–Oszmałek, E., Rawski, M., Józefiak, D., & Józefiak, A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science, 99(1), 196-206. https://doi.org/10.3382/PS/PEZ450Bordiean, A., Krzyżaniak, M., Aljewicz, M., & Stolarski, M. J. (2022). Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, Vol. 11, Page 3075, 11(19), 3075. https://doi.org/10.3390/FOODS11193075Chávez-Guitrón, L., Cerón-Montes, G., Olvera-Contreras B, & Salinas-Pérez, F. (2014). Contenido proteico en larvas de Tenebrio molitor L. alimentadas con diferentes sustratos. Universo de la Tecnologia. https://biblat.unam.mx/hevila/Universodelatecnologica/2014/no18/4.pdfCho, K. H., Sampath, V., Kim, A. J., Yoo, J. S., & Kim, I. H. (2023). Evaluation of full-fatted and hydrolysate mealworm (Tenebrio molitor) larvae as a substitute for spray-dried plasma protein diet in weaning pigs. Journal of Animal Physiology and Animal Nutrition, 107(2), 589-597. https://doi.org/10.1111/JPN.13763CODS. (2021). Los retos de la agricultura colombiana frente al cambio climático - CODS. Centro de los objetivos de desarrollo sostenible para America Latina. https://cods.uniandes.edu.co/los-retos-de-la-agricultura-colombiana-frente-al-cambio-climatico/Coutinho, F., Castro, C., Guerreiro, I., Rangel, F., Couto, A., Serra, C. R., Peres, H., Pousão-Ferreira, P., Rawski, M., Oliva-Teles, A., & Enes, P. (2021). Mealworm larvae meal in diets for meagre juveniles: Growth, nutrient digestibility and digestive enzymes activity. Aquaculture, 535, 736362. https://doi.org/10.1016/J.AQUACULTURE.2021.736362Cozma, A., Andrei, S., Pintea, A., Miere, D., Filip, L., Loghin, F., & Ferlay, A. (2015). Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, cholesterol, and vitamin A concentrations in Carpathian goats. http://agriculturejournals.cz/doi/10.17221/8275-CJAS.html, 60(7), 289-301. https://doi.org/10.17221/8275-CJASDalmoro, Y. K., Adams, C. B., Haetinger, V. S., Bairros, L., Yacoubi, N., & Stefanello, C. (2021). Energy values of Tenebrio molitor larvae meal and tilapia byproduct meal for broiler chickens determined using the regression method. Animal Feed Science and Technology, 272, 114784. https://doi.org/10.1016/J.ANIFEEDSCI.2020.114784Deruytter, D., & Coudron, C. L. (2021). The effects of density on the growth, survival and feed conversion of Tenebrio molitor larvae. https://doi.org/10.3920/JIFF2021.0057, 8(2), 141-146. https://doi.org/10.3920/JIFF2021.0057Dreyer, M., Hörtenhuber, S., Zollitsch, W., Jäger, H., Schaden, L. M., Gronauer, A., & Kral, I. (2021). Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria – a comparison of mealworm and broiler as protein source. International Journal of Life Cycle Assessment, 26(11), 2232-2247. https://doi.org/10.1007/S11367-021-01980-4/FIGURES/7Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492, 24-34. https://doi.org/10.1016/J.AQUACULTURE.2018.03.038Dupriez, F., Rejasse, A., Rios, A., Lefebvre, T., & Nielsen‐leroux, C. (2022). Impact and Persistence of Serratia marcescens in Tenebrio molitor Larvae and Feed under Optimal and Stressed Mass Rearing Conditions. Insects 2022, Vol. 13, Page 458, 13(5), 458. https://doi.org/10.3390/INSECTS13050458Elahi, U., Wang, J., Ma, Y. B., Wu, S. G., Wu, J., Qi, G. H., & Zhang, H. J. (2020). Evaluation of Yellow Mealworm Meal as a Protein Feedstuff in the Diet of Broiler Chicks. Animals 2020, Vol. 10, Page 224, 10(2), 224. https://doi.org/10.3390/ANI10020224FAO. (2013). La contribución de Los insectos a La seguridad aLimentaria, Los medios de vida y eL medio ambiente 1 ¿Qué es La entomofagia? www.fao.org/forestry/edibleinsects/en/FAO. (2022). Marco estratégico de la FAO. FAO. https://www.fao.org/strategic-framework/esFarooq, M., & Pisante, M. (2019). Innovations in sustainable agriculture. Innovations in Sustainable Agriculture, 1-627. https://doi.org/10.1007/978-3-030-23169-9/COVERFinke, M. D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21(3), 269-285. https://doi.org/10.1002/ZOO.10031Fontes, T. V., de Oliveira, K. R. B., Almeida, I. L. G., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & E Rosa, P. V. (2019). Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals 2019, Vol. 9, Page 181, 9(4), 181. https://doi.org/10.3390/ANI9040181Fukase, E., & Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Development, 132, 104954. https://doi.org/10.1016/J.WORLDDEV.2020.104954Ghaly, A. E., & Alkoaik, F. N. (2009). The yellow mealworm as a novel source of protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331.Ghosh, S., Lee, S. M., Jung, C., & Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20(2), 686-694. https://doi.org/10.1016/J.ASPEN.2017.04.003Gkinali, A. A., Matsakidou, A., Vasileiou, E., & Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science & Technology, 119, 495-507. https://doi.org/10.1016/J.TIFS.2021.11.024Heckmann, L. H., Andersen, J. L., Gianotten, N., Calis, M., Fischer, C. H., & Calis, H. (2018). Sustainable mealworm production for feed and food. Edible Insects in Sustainable Food Systems, 321-328. https://doi.org/10.1007/978-3-319-74011-9_19/COVERHeuzé, V., & Tran, G. (2015). Rice Bran and Other Rice By-Products. INRAE, CIRAD, AFZ and FAO.Heuzé, V., Tran, G., & Lebas, F. (2016). Maize Cobs. INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/718Janssen, R. H., Vincken, J. P., Van Den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. https://doi.org/10.1021/ACS.JAFC.7B00471/ASSET/IMAGES/LARGE/JF-2017-00471Z_0001.JPEGJensen, K., Kristensen, T. N., Heckmann, L.-H. L., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. Insects as food and feed: from production to consumption, 174-198. https://doi.org/10.3920/978-90-8686-849-0Khanal, P., Pandey, D., Næss, G., Cabrita, A. R. J., Fonseca, A. J. M., Maia, M. R. G., Timilsina, B., Veldkamp, T., Sapkota, R., & Overrein, H. (2023). Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. Journal of Cleaner Production, 389, 136104. https://doi.org/10.1016/J.JCLEPRO.2023.136104Kröncke, N., & Benning, R. (2023). Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects, 14(3), 261. https://doi.org/10.3390/INSECTS14030261/S1Kröncke, N., Wittke, S., Steinmann, N., & Benning, R. (2023). Analysis of the Composition of Different Instars of Tenebrio molitor Larvae using Near-Infrared Reflectance Spectroscopy for Prediction of Amino and Fatty Acid Content. 14, 310. https://doi.org/10.3390/insects14040310Li, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92(1), 103-109. https://doi.org/10.1016/J.ACTAASTRO.2012.03.012Liu, Z., Minor, M., Morel, P. C. H., & Najar-Rodriguez, A. J. (2018). Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environmental Entomology, 47(6), 1609-1617. https://doi.org/10.1093/ee/nvy141Lock, E. J., Biancarosa, I., & Gasco, L. (2018). Insects as raw materials in compound feed for aquaculture. Edible Insects in Sustainable Food Systems, 263-276. https://doi.org/10.1007/978-3-319-74011-9_16/COVERMakkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. https://doi.org/10.1016/J.ANIFEEDSCI.2014.07.008Mamuad, L., Lee, S. H., Jeong, C. D., Ramos, S., Miguel, M., Son, A. R., Kim, S. H., Cho, Y. Il, & Lee, S. S. (2021). Ornamental fish, Cyprinus carpio, fed with fishmeal replacement Ptecticus tenebrifer and Tenebrio molitor. Aquaculture Research, 52(3), 980-990. https://doi.org/10.1111/ARE.14953Mandrile, L., Fusaro, I., Amato, G., Marchis, D., Martra, G., & Rossi, A. M. (2018). Detection of insect’s meal in compound feed by Near Infrared spectral imaging. Food Chemistry, 267, 240-245. https://doi.org/10.1016/J.FOODCHEM.2018.01.127Medina Roa, J. (2017). Tunja, Ciudad que emerge | La Red Cultural del Banco de la República. Banrepcultural. https://www.banrepcultural.org/biblioteca-virtual/credencial-historia-no-237/tunja-ciudad-que-emergeMeireles, E. A., Carneiro, C. N. B., DaMatta, R. A., Samuels, R. I., & Silva, C. P. (2009). Digestion of starch granules from maize, potato and wheat by larvae of the the yellow mealworm, tenebrio molitor and the Mexican bean weevil, Zabrotes subfasciatus. Journal of Insect Science, 9(1), 1536-2442. https://doi.org/10.1673/031.009.4301/895407Miglietta, P. P., De Leo, F., Ruberti, M., & Massari, S. (2015). Mealworms for Food: A Water Footprint Perspective. Water 2015, Vol. 7, Pages 6190-6203, 7(11), 6190-6203. https://doi.org/10.3390/W7116190Morales-Ramos, J. A., Rojas, M. G., Shapiro-Llan, D. I., & Tedders, W. L. (2013). Use of Nutrient Self-Selection as a Diet Refining Tool in Tenebrio molitor (Coleoptera: Tenebrionidae). https://doi.org/10.18474/0749-8004-48.3.206, 48(3), 206-221. https://doi.org/10.18474/0749-8004-48.3.206Ng, W. K. (2001). Potential of mealworm (Tenebrio molifor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research, 32(SUPPL. 1), 273-280. https://doi.org/10.1046/J.1355-557X.2001.00024.XNowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39-46. https://doi.org/10.1016/J.FOODCHEM.2014.10.114Nyanzira, A., Machona, O., Matongorere, M., Chidzwondo, F., & Mangoyi, R. (2023). Analysis of Frass Excreted by Tenebrio molitor for Use as Fertilizer. Entomology and Applied Science Letters, 10(1), 29-37. https://doi.org/10.51847/XBW1OOFQXNOonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental Impact of the Production of Mealworms as a Protein Source for Humans – A Life Cycle Assessment. PLOS ONE, 7(12), e51145. https://doi.org/10.1371/JOURNAL.PONE.0051145Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLOS ONE, 10(12), e0144601. https://doi.org/10.1371/JOURNAL.PONE.0144601Oonincx, D. G. A. B., van Itterbeeck, J., Heetkamp, M. J. W., van den Brand, H., van Loon, J. J. A., & van Huis, A. (2010). An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLOS ONE, 5(12), e14445. https://doi.org/10.1371/JOURNAL.PONE.0014445Paul, A., Frederich, M., Megido, R. C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G., & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/10.1016/j.aspen.2017.02.001Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. https://doi.org/10.1016/J.ANIFEEDSCI.2017.02.007Poveda, J. (2021). Insect frass in the development of sustainable agriculture. A review. https://doi.org/10.1007/s13593-020-00656-x/PublishedPoveda, J., Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui-Martín, R., Rivas, R., & García-Fraile, P. (2019). Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Applied Soil Ecology, 142, 110-122. https://doi.org/10.1016/J.APSOIL.2019.04.016Prokkola, J., Roff, D., Kärkkäinen, T., Krams, I., & Rantala, M. J. (2013). Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor. Heredity, 111(2), 89-96. https://doi.org/10.1038/HDY.2013.20Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256, 113265. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113265R software. (2023). R: The R Project for Statistical Computing. R Project for Statistical Computing. https://www.r-project.org/Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal of Economic Entomology, 95(1), 214-220. https://doi.org/10.1603/0022-0493-95.1.214Ratcliffe, N., Azambuja, P., & Mello, C. B. (2014). Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines. Evidence-based Complementary and Alternative Medicine : eCAM, 2014. https://doi.org/10.1155/2014/904958Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2020). Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes 2020, Vol. 8, Page 857, 8(7), 857. https://doi.org/10.3390/PR8070857Ravzanaadii, N., Kim, S.-H., Choi, W.-H., Hong, S.-J., & Kim, N.-J. (2012). Nutritional Value of Mealworm, Tenebrio molitor as Food Source. International Journal of Industrial Entomology, 25(1), 93-98. https://doi.org/10.7852/IJIE.2012.25.1.093Remiro, A., Remón, S., & Fondevila, M. (2021). Alimentación de larvas de tenebrio molitor con subproducto de pan y ensilado de maíz en sustitución de trigo y salvado. XIX Jornadas sobre Producción Animal, 92. https://www.aida-itea.org/aida-itea/files/jornadas/2021/comunicaciones/2021_NyA_54.pdfRumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5), 802-823. https://doi.org/10.1002/MNFR.201200735Rumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/J.IFSET.2012.11.005Ruschioni, S., Loreto, N., Foligni, R., Mannozzi, C., Raffaelli, N., Zamporlini, F., Pasquini, M., Roncolini, A., Cardinali, F., Osimani, A., Aquilanti, L., Isidoro, N., Riolo, P., & Mozzon, M. (2020). Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio Molitor L.) Larvae. Foods 2020, Vol. 9, Page 317, 9(3), 317. https://doi.org/10.3390/FOODS9030317Shahzad, A. (2011). Hemp fiber and its composites – a review. http://dx.doi.org/10.1177/0021998311413623, 46(8), 973-986. https://doi.org/10.1177/0021998311413623Sideris, V., Georgiadou, M., Papadoulis, G., Mountzouris, K., & Tsagkarakis, A. (2021). Effect of Processed Beverage By-Product-Based Diets on Biological Parameters, Conversion Efficiency and Body Composition of Hermetia illucens (L) (Diptera: Stratiomyidae). Insects 2021, Vol. 12, Page 475, 12(5), 475. https://doi.org/10.3390/INSECTS12050475Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. 4(6), 287-291. https://doi.org/10.4236/as.2013.46041Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 1-14. https://doi.org/10.1186/S40104-021-00551-9/TABLES/6Toviho, O. A., & Bársony, P. (2022). Nutrient Composition and Growth of Yellow Mealworm (Tenebrio molitor) at Different Ages and Stages of the Life Cycle. Agriculture 2022, Vol. 12, Page 1924, 12(11), 1924. https://doi.org/10.3390/AGRICULTURE12111924Tzompa-Sosa, D. A., Yi, L., van Valenberg, H. J. F., van Boekel, M. A. J. S., & Lakemond, C. M. M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087-1094. https://doi.org/10.1016/J.FOODRES.2014.05.052UN. (2023). Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. https://sdgs.un.org/2030agendaUrrejola, S., Nespolo, R., & Lardies, M. A. (2011). Diet-induced developmental plasticity in life histories and energy metabolism in a beetle. Revista chilena de historia natural, 84(4), 523-533. https://doi.org/10.4067/S0716-078X2011000400005van Broekhoven, S., Oonincx, D. G. A. B., van Huis, A., & van Loon, J. J. A. (2015). Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73, 1-10. https://doi.org/10.1016/J.JINSPHYS.2014.12.005Veldkamp, T., & Bosch, G. (2015). Insects: A protein-rich feed ingredient in pig and poultry diets. Animal Frontiers, 5(2), 45-50. https://doi.org/10.2527/AF.2015-0019Veldkamp, T., Duinkerken, G. van, Huis, A. van, Lakemond, C. M. M., Ottevanger, E., Bosch, G., & Boekel, T. van. (2012). Insects as a sustainable feed ingredient in pig and poultry diets : a feasibility study = Insecten als duurzame diervoedergrondstof in varkens- en pluimveevoeders : een haalbaarheidsstudie. http://www.livestockresearch.wur.nlYakti, W., Förster, N., Müller, M., Mewis, I., & Ulrichs, C. (2023). Hemp Waste as a Substrate for Hermetia illucens (L.) (Diptera: Stratiomyidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) Rearing. Insects 2023, Vol. 14, Page 183, 14(2), 183. https://doi.org/10.3390/INSECTS14020183Yakti, W., Müller, M., Klost, M., Mewis, I., Dannehl, D., & Ulrichs, C. (2023). Physical Properties of Substrates as a Driver for Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae Growth. Insects 2023, Vol. 14, Page 266, 14(3), 266. https://doi.org/10.3390/INSECTS14030266Zhang, Q., Hou, Y., Bazer, F. W., He, W., Posey, E. A., & Wu, G. (2021). Amino Acids in Swine Nutrition and Production. Advances in Experimental Medicine and Biology, 1285, 81-107. https://doi.org/10.1007/978-3-030-54462-1_6Zhang, X., Tang, H., Chen, G., Qiao, L., Li, J., Liu, B., Liu, Z., Li, M., & Liu, X. (2019). Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. European Food Research and Technology, 245(12), 2631-2640. https://doi.org/10.1007/S00217-019-03336-7Zhao, X., Vázquez-Gutiérrez, J. L., Johansson, D. P., Landberg, R., & Langton, M. (2016). Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLOS ONE, 11(2), e0147791. https://doi.org/10.1371/JOURNAL.PONE.0147791Tenebrio molitorProductos agrícolas - almacenamiento - Enfermedades y dañosPlagas de alimentos almacenadosEconomía circularTenebrionidosHarina de insectoAlimento alternativoBioconversiónProducción sostenibleProteínaFacultad de Ciencias AgropecuariasTunjaMedicina Veterinaria y ZootecniaspaPúblico generalORIGINALEvaluacion_parametros_productivos.pdfEvaluacion_parametros_productivos.pdfArchivo principalapplication/pdf1956722https://repositorio.uptc.edu.co/bitstreams/ceaaf750-a4b0-405c-98fc-ca85468cb33d/downloade4ed2b366ff2af6068393db47c867eb7MD51A_DLSG.pdfA_DLSG.pdfAutorización publicaciónapplication/pdf891607https://repositorio.uptc.edu.co/bitstreams/e20573d2-4ce0-49be-9e7e-96dcddea1d85/downloaded0c435b2ecc95aa50702d0e1b65a78fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uptc.edu.co/bitstreams/8706afc9-08dd-4466-a21f-39a76d46c474/download8a4605be74aa9ea9d79846c1fba20a33MD53TEXTEvaluacion_parametros_productivos.pdf.txtEvaluacion_parametros_productivos.pdf.txtExtracted texttext/plain104928https://repositorio.uptc.edu.co/bitstreams/bede1df1-d563-4f40-9f4d-7081ad7b375f/download5bbed92f44e40d1897fa595113472169MD54A_DLSG.pdf.txtA_DLSG.pdf.txtExtracted texttext/plain2https://repositorio.uptc.edu.co/bitstreams/5a11c135-60c1-47db-8ca5-2d8fbdf5d159/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56THUMBNAILEvaluacion_parametros_productivos.pdf.jpgEvaluacion_parametros_productivos.pdf.jpgGenerated Thumbnailimage/jpeg3100https://repositorio.uptc.edu.co/bitstreams/ea14b769-4161-4a61-8ef9-9c54986b29cb/downloaddb07a4f1921560cd499a42b3cebc103aMD55A_DLSG.pdf.jpgA_DLSG.pdf.jpgGenerated Thumbnailimage/jpeg5505https://repositorio.uptc.edu.co/bitstreams/39270948-31cd-442c-a16c-7c0fa863ba04/downloadc626c1b2938041fd840f516e81506392MD57001/9514oai:repositorio.uptc.edu.co:001/95142024-02-22 07:31:36.682https://creativecommons.org/licenses/by/4.0/Copyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombiaopen.accesshttps://repositorio.uptc.edu.coUPTC DSpacerepositorio.uptc@uptc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |