Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem

When we use a discretization by finite differences, to solve differential equations we find problems at the border of the domain of the solution. If the solution is also immersed in a ill-posed inverse problem; we can find very bad solutions. In this paper we apply a discretization of two - sided di...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15401
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/16629
https://repositorio.uptc.edu.co/handle/001/15401
Palabra clave:
Problemas inversos, métodos de regularización, ecuaciones elípticas, problemas mal puestos, métodos de molificación
Inverse problems, regularization methods, elliptic equations, ill-posed problems, mollification methods.
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_b6aadb0ca70ae71400de46148df18b66
oai_identifier_str oai:repositorio.uptc.edu.co:001/15401
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2024-04-092024-07-08T14:24:12Z2024-07-08T14:24:12Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1662910.19053/01217488.v15.n1.2024.16629https://repositorio.uptc.edu.co/handle/001/15401When we use a discretization by finite differences, to solve differential equations we find problems at the border of the domain of the solution. If the solution is also immersed in a ill-posed inverse problem; we can find very bad solutions. In this paper we apply a discretization of two - sided difference quotients method to solve Ill-posed inverse self-adjoint elliptic problem [Kirsch(2011)]. Some numerical examples showing the effectiveness of this method and we will use mollification techniques to smooth the solutions.Cuando utilizamos una discretización por diferencias finitas para solucionar ecuaciones diferenciales, encontramos problemas en la frontera del dominio de la solución; si además la solución esta inmersa en un problema inverso mal puesto, podemos encontrar soluciones muy malas. En este artículo aplicamos una discretización del cociente de diferencias de dos lados para resolver un problema elíptico autoadjunto inverso mal puesto [Kirsch(2011)]. Mostraremos algunos ejemplos numéricos que muestran la efectividad de este método y usaremos técnicas de molificación para suavizar las soluciones.spaUniversidad Pedagógica y Tecnológica de ColombiaCiencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-JunioCiencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio2462-76580121-7488Problemas inversos, métodos de regularización, ecuaciones elípticas, problemas mal puestos, métodos de molificaciónInverse problems, regularization methods, elliptic equations, ill-posed problems, mollification methods.Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problemAplicación de un método de cociente de diferencias de dos lados en la solución de un problema inverso mal puesto no lineal de una ecuación elíptica auto-adjuntainfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Olivar Robayo, Luis EduardoGranada Díaz, Héctor Andrés001/15401oai:repositorio.uptc.edu.co:001/154012025-07-18 10:56:46.3metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
dc.title.es-ES.fl_str_mv Aplicación de un método de cociente de diferencias de dos lados en la solución de un problema inverso mal puesto no lineal de una ecuación elíptica auto-adjunta
title Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
spellingShingle Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
Problemas inversos, métodos de regularización, ecuaciones elípticas, problemas mal puestos, métodos de molificación
Inverse problems, regularization methods, elliptic equations, ill-posed problems, mollification methods.
title_short Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
title_full Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
title_fullStr Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
title_full_unstemmed Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
title_sort Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed inverse self-adjoint elliptic problem
dc.subject.es-ES.fl_str_mv Problemas inversos, métodos de regularización, ecuaciones elípticas, problemas mal puestos, métodos de molificación
topic Problemas inversos, métodos de regularización, ecuaciones elípticas, problemas mal puestos, métodos de molificación
Inverse problems, regularization methods, elliptic equations, ill-posed problems, mollification methods.
dc.subject.en-US.fl_str_mv Inverse problems, regularization methods, elliptic equations, ill-posed problems, mollification methods.
description When we use a discretization by finite differences, to solve differential equations we find problems at the border of the domain of the solution. If the solution is also immersed in a ill-posed inverse problem; we can find very bad solutions. In this paper we apply a discretization of two - sided difference quotients method to solve Ill-posed inverse self-adjoint elliptic problem [Kirsch(2011)]. Some numerical examples showing the effectiveness of this method and we will use mollification techniques to smooth the solutions.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:12Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:12Z
dc.date.none.fl_str_mv 2024-04-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/16629
10.19053/01217488.v15.n1.2024.16629
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15401
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/16629
https://repositorio.uptc.edu.co/handle/001/15401
identifier_str_mv 10.19053/01217488.v15.n1.2024.16629
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633901007405056