Neural network study for the subject demand forecasting

Course planning of an educative center or university is composed of multiple complex problems like the design of the schedule for the students, classrooms, and professors for each signature. One of the problems is the forecasting of the number of subjects to make available for the students; this pro...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14230
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783
https://repositorio.uptc.edu.co/handle/001/14230
Palabra clave:
artificial neural networks
demand forecasting
strategic planning
planeación estratégica
pronóstico de demanda
redes neuronales artificiales
Rights
License
http://purl.org/coar/access_right/c_abf412
id REPOUPTC2_b1dd9b22f286548957a2e39401c3df62
oai_identifier_str oai:repositorio.uptc.edu.co:001/14230
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Neural network study for the subject demand forecasting
dc.title.es-ES.fl_str_mv Estudio de redes neuronales para el pronóstico de la demanda de asignaturas
title Neural network study for the subject demand forecasting
spellingShingle Neural network study for the subject demand forecasting
artificial neural networks
demand forecasting
strategic planning
planeación estratégica
pronóstico de demanda
redes neuronales artificiales
title_short Neural network study for the subject demand forecasting
title_full Neural network study for the subject demand forecasting
title_fullStr Neural network study for the subject demand forecasting
title_full_unstemmed Neural network study for the subject demand forecasting
title_sort Neural network study for the subject demand forecasting
dc.subject.en-US.fl_str_mv artificial neural networks
demand forecasting
strategic planning
topic artificial neural networks
demand forecasting
strategic planning
planeación estratégica
pronóstico de demanda
redes neuronales artificiales
dc.subject.es-ES.fl_str_mv planeación estratégica
pronóstico de demanda
redes neuronales artificiales
description Course planning of an educative center or university is composed of multiple complex problems like the design of the schedule for the students, classrooms, and professors for each signature. One of the problems is the forecasting of the number of subjects to make available for the students; this problem seems easy at first glance because once we have the number of approved and failed students for each subject, we can easily calculate the following demand for each subject. However, there are occasions where the course planning for the following period starts before having the information related to the number of accredited students; which lead us to the problem of forecasting the accreditation ratio for the calculation of the subject demand from the students. In this paper, the performance of a causal model compares to the performance of a statistical model for the forecasting of the approve and fail ratio of the students. The final results show that the causal model outperforms the statistical model for the given instances. We consider that this advantage occurs because the causal model learns the behavior patterns of the training data independently, instead of generalizing the accreditation ratio. Additionally, the statistical method can present significant problems when trying to forecast accreditation ratios for situations that are not found in the training data, while the causal model will use the information learned to predict such situations.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:49Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:49Z
dc.date.none.fl_str_mv 2019-01-10
dc.type.en-US.fl_str_mv research
dc.type.es-ES.fl_str_mv investigación
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a495
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783
10.19053/01211129.v28.n50.2019.8783
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14230
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783
https://repositorio.uptc.edu.co/handle/001/14230
identifier_str_mv 10.19053/01211129.v28.n50.2019.8783
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783/7285
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783/7502
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783/7531
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf412
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf412
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/xml
dc.coverage.en-US.fl_str_mv N.A.
dc.coverage.es-ES.fl_str_mv N.A.
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 28 No. 50 (2019); 34-43
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 28 Núm. 50 (2019); 34-43
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633895884062720
spelling 2019-01-102024-07-05T19:11:49Z2024-07-05T19:11:49Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/878310.19053/01211129.v28.n50.2019.8783https://repositorio.uptc.edu.co/handle/001/14230Course planning of an educative center or university is composed of multiple complex problems like the design of the schedule for the students, classrooms, and professors for each signature. One of the problems is the forecasting of the number of subjects to make available for the students; this problem seems easy at first glance because once we have the number of approved and failed students for each subject, we can easily calculate the following demand for each subject. However, there are occasions where the course planning for the following period starts before having the information related to the number of accredited students; which lead us to the problem of forecasting the accreditation ratio for the calculation of the subject demand from the students. In this paper, the performance of a causal model compares to the performance of a statistical model for the forecasting of the approve and fail ratio of the students. The final results show that the causal model outperforms the statistical model for the given instances. We consider that this advantage occurs because the causal model learns the behavior patterns of the training data independently, instead of generalizing the accreditation ratio. Additionally, the statistical method can present significant problems when trying to forecast accreditation ratios for situations that are not found in the training data, while the causal model will use the information learned to predict such situations.La planeación de cursos de un centro educativo o universidad está compuesta por múltiples problemas complejos como lo es la asignación de horarios para los alumnos, salones y profesores para cada asignatura. Uno de los problemas iniciales es determinar la cantidad de asignaturas que se ofertarán; este problema parece sencillo a simple vista ya que una vez que se tenga la información de la cantidad de alumnos aprobados para cada asignatura, se puede calcular fácilmente la siguiente demanda de asignaturas. Sin embargo, existen ocasiones en los que la planeación de cursos del siguiente período inicia antes de tener la información relativa a la aprobación de los alumnos. Lo cual nos lleva al problema del pronóstico de los porcentajes de aprobación para calcular la demanda de asignaturas de los alumnos. En este trabajo se compara el desempeño de modelos causales contra modelos estadísticos para el pronóstico de los porcentajes de aprobación y reprobación de los alumnos. Los resultados finales muestran una ventaja importante de los métodos causales sobre los métodos estadísticos para los casos de prueba. Consideramos que esta ventaja ocurre debido a que el modelo causal aprende los patrones de comportamiento de los datos de entrenamiento de forma independiente en vez de generalizar porcentajes de acreditación. Además de lo anterior, el método estadístico puede presentar problemas importantes al tratar de pronosticar porcentajes de acreditación para situaciones que no se encuentren en los datos de entrenamiento, mientras que el modelo causal utilizará la información aprendida para pronosticar dichas situaciones.application/pdfapplication/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783/7285https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783/7502https://revistas.uptc.edu.co/index.php/ingenieria/article/view/8783/7531Revista Facultad de Ingeniería; Vol. 28 No. 50 (2019); 34-43Revista Facultad de Ingeniería; Vol. 28 Núm. 50 (2019); 34-432357-53280121-1129artificial neural networksdemand forecastingstrategic planningplaneación estratégicapronóstico de demandaredes neuronales artificialesNeural network study for the subject demand forecastingEstudio de redes neuronales para el pronóstico de la demanda de asignaturasresearchinvestigacióninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a495http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf412http://purl.org/coar/access_right/c_abf2N.A.N.A.Terán-Villanueva, Jesús DavidIbarra-Martínez, SalvadorLaria-Menchaca, JulioCastán-Rocha, José AntonioTreviño-Berrones, Mayra GuadalupeGarcía-Ruiz, Alejandro HumbertoMartínez-Infante, José Eduardo001/14230oai:repositorio.uptc.edu.co:001/142302025-07-18 11:53:58.272metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co