Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model

In practice, complications can arise when constructing optimal designs for non-linear regression models. One of the major problems is when the observations are correlated, since they are taken from the same individual, object or experimental unit. When using the D-optimality criterion, it depends bo...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15273
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/9504
https://repositorio.uptc.edu.co/handle/001/15273
Palabra clave:
Diseño D-óptimo, Modelos no lineales, Estructura de correlación, Matriz de Información de Fisher, Distribuciones a priori
D-optimal design, non-linear models, correlation structure, Fisher Information Matrix, a priori distributions
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_9d4aab0d30573db0607ad370c3102208
oai_identifier_str oai:repositorio.uptc.edu.co:001/15273
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
dc.title.es-ES.fl_str_mv Efecto de distribuciones a priori en los diseños D-óptimos Bayesianos para un modelo no lineal correlacionado
title Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
spellingShingle Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
Diseño D-óptimo, Modelos no lineales, Estructura de correlación, Matriz de Información de Fisher, Distribuciones a priori
D-optimal design, non-linear models, correlation structure, Fisher Information Matrix, a priori distributions
title_short Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
title_full Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
title_fullStr Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
title_full_unstemmed Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
title_sort Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model
dc.subject.es-ES.fl_str_mv Diseño D-óptimo, Modelos no lineales, Estructura de correlación, Matriz de Información de Fisher, Distribuciones a priori
topic Diseño D-óptimo, Modelos no lineales, Estructura de correlación, Matriz de Información de Fisher, Distribuciones a priori
D-optimal design, non-linear models, correlation structure, Fisher Information Matrix, a priori distributions
dc.subject.en-US.fl_str_mv D-optimal design, non-linear models, correlation structure, Fisher Information Matrix, a priori distributions
description In practice, complications can arise when constructing optimal designs for non-linear regression models. One of the major problems is when the observations are correlated, since they are taken from the same individual, object or experimental unit. When using the D-optimality criterion, it depends both on the parameter vector of the model and on the correlation structure assumed for the error term. One way to avoid this dependence is through the inclusion of a priori distributions in the D-optimality criterion. In this paper we study the effect of the choice of different a priori distributions, such as the Uniform, Gamma and Lognormal distributions in obtaining the D-optimal designs for a non-linear model, when the errors present different correlation structures. The designs are found by maximizing the approximate D-optimality criterion by the Monte Carlo method. In addition, a general methodology is proposed to find D-optimal designs for any type of non-linear model in the presence of correlated observations. Finally, it is proposed to compare the designs found by calculating the efficiencies taking as a reference design the one obtained with the a priori Uniform distribution. The methodology established in a case study is applied, and it is concluded that the designs obtained depend as much on the correlation structure as on the a priori distribution considered.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:23:57Z
dc.date.available.none.fl_str_mv 2024-07-08T14:23:57Z
dc.date.none.fl_str_mv 2019-07-23
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/9504
10.19053/01217488.v10.n2.2019.9504
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15273
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/9504
https://repositorio.uptc.edu.co/handle/001/15273
identifier_str_mv 10.19053/01217488.v10.n2.2019.9504
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/9504/8671
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 10 No. 2 (2019): Vol 10, Núm. 2 (2019): Julio - Diciembre; 165-179
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 10 Núm. 2 (2019): Vol 10, Núm. 2 (2019): Julio - Diciembre; 165-179
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633867816828928
spelling 2019-07-232024-07-08T14:23:57Z2024-07-08T14:23:57Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/950410.19053/01217488.v10.n2.2019.9504https://repositorio.uptc.edu.co/handle/001/15273In practice, complications can arise when constructing optimal designs for non-linear regression models. One of the major problems is when the observations are correlated, since they are taken from the same individual, object or experimental unit. When using the D-optimality criterion, it depends both on the parameter vector of the model and on the correlation structure assumed for the error term. One way to avoid this dependence is through the inclusion of a priori distributions in the D-optimality criterion. In this paper we study the effect of the choice of different a priori distributions, such as the Uniform, Gamma and Lognormal distributions in obtaining the D-optimal designs for a non-linear model, when the errors present different correlation structures. The designs are found by maximizing the approximate D-optimality criterion by the Monte Carlo method. In addition, a general methodology is proposed to find D-optimal designs for any type of non-linear model in the presence of correlated observations. Finally, it is proposed to compare the designs found by calculating the efficiencies taking as a reference design the one obtained with the a priori Uniform distribution. The methodology established in a case study is applied, and it is concluded that the designs obtained depend as much on the correlation structure as on the a priori distribution considered.En la práctica pueden surgir complicaciones a la hora de construir diseños óptimos para modelos de regresión no lineales, uno de los grandes problemas  se  evidencia cuando  las observaciones son correlacionadas, debido a que éstas  son tomadas de un mismo individuo, objeto o  unidad experimental. Al momento de utilizar el criterio de D-optimalidad este depende tanto del vector de parámetros del modelo como de la estructura de correlación supuesta para el término de error.  Una forma de evitar esta dependencia es mediante la inclusión de distribuciones a priori en el criterio de D-optimalidad.  En este artículo se estudia el efecto que tiene la escogencia de diferentes distribuciones a priori, tales como las distribuciones Uniforme, Gamma y Log normal  en la obtención de los diseños D-óptimos para  un modelo no lineal, cuando los errores presentan diferentes estructuras de correlación. Se hallan los diseños al maximizar el criterio de D-optimalidad aproximado por  el método de Monte Carlo. Además, se propone una metodología general que permite  hallar diseños D-óptimos para cualquier tipo de modelo no lineal en presencia de observaciones correlacionadas. Finalmente, se propone comparar los diseños encontrados mediante el cálculo  de las eficiencias tomando como diseño de referencia el obtenido con la distribución a priori Uniforme. Se aplica la metodología establecida en un caso de estudio, y se concluye que los diseños obtenidos dependen tanto de la estructura de correlacióncomo de la distribución a priori considerada.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/9504/8671Ciencia En Desarrollo; Vol. 10 No. 2 (2019): Vol 10, Núm. 2 (2019): Julio - Diciembre; 165-179Ciencia en Desarrollo; Vol. 10 Núm. 2 (2019): Vol 10, Núm. 2 (2019): Julio - Diciembre; 165-1792462-76580121-7488Diseño D-óptimo, Modelos no lineales, Estructura de correlación, Matriz de Información de Fisher, Distribuciones a prioriD-optimal design, non-linear models, correlation structure, Fisher Information Matrix, a priori distributionsEffect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear modelEfecto de distribuciones a priori en los diseños D-óptimos Bayesianos para un modelo no lineal correlacionadoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Mosquera Benítez, Juan CarlosLópez Rios, Victor Ignacio001/15273oai:repositorio.uptc.edu.co:001/152732025-07-18 10:56:40.322metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co