Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy
Gas Tungsten Arc Welding (GTAW) is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work wer...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14151
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5293
https://repositorio.uptc.edu.co/handle/001/14151
- Palabra clave:
- AA6105
cold work
GTAW
secondary phase
ultimate tensile strength
welding current
welding speed
weld bead hardness
AA6105
corriente de soldadura
GTAW
resistencia a la tensión
soldadura de aluminio
velocidad de soldadura
- Rights
- License
- http://purl.org/coar/access_right/c_abf123
id |
REPOUPTC2_946006e3e8a0e9fa6a69eab9b2777bfa |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14151 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2016-09-012024-07-05T19:11:29Z2024-07-05T19:11:29Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/529310.19053/01211129.v25.n43.2016.5293https://repositorio.uptc.edu.co/handle/001/14151Gas Tungsten Arc Welding (GTAW) is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.La soldadura con arco de tungsteno y gas (GTAW, sigla en inglés) es uno de los métodos más usados para soldar aluminio. En el presente trabajo se estudió la influencia de la corriente y la velocidad de soldadura en la microestructura y las propiedades mecánicas de la zona afectada por el calor de juntas de láminas de aluminio AA6105 con diferentes porcentajes de trabajo en frío soldadas por GTAW. También se evaluaron los cambios microestructurales en la zona de fusión, donde desaparece todo el historial del trabajo en frío. Las muestras fueron examinadas con microscopía óptica y electrónica de barrido, se realizaron ensayos de tracción y mediciones de dureza Vickers. En la zona de fusión se obtuvo una morfología dendrítica, con micro y macrosegregación de soluto, lo cual es favorecido por el superenfriamiento constitucional. Cuando aumentaron el calor aportado y la velocidad de soldadura, o esta última se mantuvo constante, fue mayor la segregación de soluto, mientras que con una disminución de la velocidad de soldadura la microestructura obtenida fue más gruesa. En la zona afectada por el calor se produjo recristalización, disolución o engrosamiento de precipitados, que originaron variaciones en la dureza y la resistencia máxima a tracción.application/pdftext/htmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/5293/4432https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5293/5058Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 7-19Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 7-192357-53280121-1129AA6105cold workGTAWsecondary phaseultimate tensile strengthwelding currentwelding speedweld bead hardnessAA6105corriente de soldaduraGTAWresistencia a la tensiónsoldadura de aluminiovelocidad de soldaduraMicrostructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloyMicroestructura y propiedades mecánicas de la soldadura GTAW de aluminio AA6105investigationinvestigacióninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a206http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf123http://purl.org/coar/access_right/c_abf2Dorta-Almenara, MinervaCapace, María Cristina001/14151oai:repositorio.uptc.edu.co:001/141512025-07-18 11:53:37.401metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy |
dc.title.es-ES.fl_str_mv |
Microestructura y propiedades mecánicas de la soldadura GTAW de aluminio AA6105 |
title |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy |
spellingShingle |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy AA6105 cold work GTAW secondary phase ultimate tensile strength welding current welding speed weld bead hardness AA6105 corriente de soldadura GTAW resistencia a la tensión soldadura de aluminio velocidad de soldadura |
title_short |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy |
title_full |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy |
title_fullStr |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy |
title_full_unstemmed |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy |
title_sort |
Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy |
dc.subject.en-US.fl_str_mv |
AA6105 cold work GTAW secondary phase ultimate tensile strength welding current welding speed weld bead hardness |
topic |
AA6105 cold work GTAW secondary phase ultimate tensile strength welding current welding speed weld bead hardness AA6105 corriente de soldadura GTAW resistencia a la tensión soldadura de aluminio velocidad de soldadura |
dc.subject.es-ES.fl_str_mv |
AA6105 corriente de soldadura GTAW resistencia a la tensión soldadura de aluminio velocidad de soldadura |
description |
Gas Tungsten Arc Welding (GTAW) is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:11:29Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:11:29Z |
dc.date.none.fl_str_mv |
2016-09-01 |
dc.type.en-US.fl_str_mv |
investigation |
dc.type.es-ES.fl_str_mv |
investigación |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a206 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5293 10.19053/01211129.v25.n43.2016.5293 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14151 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5293 https://repositorio.uptc.edu.co/handle/001/14151 |
identifier_str_mv |
10.19053/01211129.v25.n43.2016.5293 |
dc.language.none.fl_str_mv |
eng |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5293/4432 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5293/5058 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf123 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf123 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 7-19 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 7-19 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633815698407424 |