Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions

Hierarchical Bayesian models are used in data modeling in different areas in which hierarchical structures are reflected through random effects.Usually the Normal distribution is used to model the random effects. The Inverse-gamma(ε , ε ) distribution is used as prior distribution for scale paramete...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15335
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13655
https://repositorio.uptc.edu.co/handle/001/15335
Palabra clave:
Inferencia bayesiana
Modelo jerárquico
Parámetro de escala
Distribución t-Student
Bayesian Inference
Hierarchical model
Scale parameter
t-Student distribution
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_8b5be937fa24787090ef249e37175313
oai_identifier_str oai:repositorio.uptc.edu.co:001/15335
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
dc.title.es-ES.fl_str_mv Análisis de las estimaciones de los efectos aleatorios de un modelo jerárquico con distribuciones a priori de colas pesadas
title Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
spellingShingle Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
Inferencia bayesiana
Modelo jerárquico
Parámetro de escala
Distribución t-Student
Bayesian Inference
Hierarchical model
Scale parameter
t-Student distribution
title_short Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
title_full Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
title_fullStr Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
title_full_unstemmed Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
title_sort Analysis of the random effects estimator of a hierarchical model with heavy tailed priori distributions
dc.subject.es-ES.fl_str_mv Inferencia bayesiana
Modelo jerárquico
Parámetro de escala
Distribución t-Student
topic Inferencia bayesiana
Modelo jerárquico
Parámetro de escala
Distribución t-Student
Bayesian Inference
Hierarchical model
Scale parameter
t-Student distribution
dc.subject.en-US.fl_str_mv Bayesian Inference
Hierarchical model
Scale parameter
t-Student distribution
description Hierarchical Bayesian models are used in data modeling in different areas in which hierarchical structures are reflected through random effects.Usually the Normal distribution is used to model the random effects. The Inverse-gamma(ε , ε ) distribution is used as prior distribution for scale parameters with very small ε values, this selection has been criticized, some authors comment that unstable posterior distributions can be obtained, which causes not robust inference. Distributions such as half -Cauchy, Scaled Beta2 (SBeta2) and Uniform are considered as alternatives by many authors to model the scale parameter. In the present research work, the behavior of the random effects estimators in a hierarchical model with a Baye- sian approach was examined. It was assumed random effects distribution t-Student and scale parameter distributions half -Cauchy, SBeta2 and Uniform. A simulation study was carry on to evaluate the behavior of the random effects estimators. Based on the obtained results, and under differen scenarios, it was possible to examine the shrinkage of the posterior parameters of the model. We concluded that in presence of atypical values, the shrinkage is lower when the effects are modeled with a t-Student distribution compared with those obtained when a Normal distribution is associated to the random effects, under the same prior distribution for the scale parameter.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:05Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:05Z
dc.date.none.fl_str_mv 2022-01-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.en-US.fl_str_mv text
dc.type.es-ES.fl_str_mv texto
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13655
10.19053/01217488.v13.n1.2022.13655
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15335
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13655
https://repositorio.uptc.edu.co/handle/001/15335
identifier_str_mv 10.19053/01217488.v13.n1.2022.13655
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13655/12522
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 13 No. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 65-78
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 13 Núm. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 65-78
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633787257880576
spelling 2022-01-292024-07-08T14:24:05Z2024-07-08T14:24:05Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1365510.19053/01217488.v13.n1.2022.13655https://repositorio.uptc.edu.co/handle/001/15335Hierarchical Bayesian models are used in data modeling in different areas in which hierarchical structures are reflected through random effects.Usually the Normal distribution is used to model the random effects. The Inverse-gamma(ε , ε ) distribution is used as prior distribution for scale parameters with very small ε values, this selection has been criticized, some authors comment that unstable posterior distributions can be obtained, which causes not robust inference. Distributions such as half -Cauchy, Scaled Beta2 (SBeta2) and Uniform are considered as alternatives by many authors to model the scale parameter. In the present research work, the behavior of the random effects estimators in a hierarchical model with a Baye- sian approach was examined. It was assumed random effects distribution t-Student and scale parameter distributions half -Cauchy, SBeta2 and Uniform. A simulation study was carry on to evaluate the behavior of the random effects estimators. Based on the obtained results, and under differen scenarios, it was possible to examine the shrinkage of the posterior parameters of the model. We concluded that in presence of atypical values, the shrinkage is lower when the effects are modeled with a t-Student distribution compared with those obtained when a Normal distribution is associated to the random effects, under the same prior distribution for the scale parameter.Los modelos jerárquicos Bayesianos son utilizados en la modelación de datos en diferentes áreas en las cuales las estructuras jerárquicas se reflejan a través de efectos aleatorios. La distribución de probabilidad considerada como elección natural para el modelamiento de los efectos aleatorios es la Normal. Como distribución a priori para el parámetro de escala regularmente se utiliza Gamma-inversa (ε,ε) (IG) con valores de ε muy pequeños y esta selección ha tenido críticas, algunos autores comentan que se pueden obtener distribuciones posteriores inestables, lo cual ocasiona que la inferencia no sea robusta. Distri- buciones como half -Cauchy, Beta2 escalada (SBeta2) y Uniforme son consideradas como alternativas por diversos autores para modelar el parámetro de escala. En el presente trabajo de investigación se examinó el comportamiento de las estimaciones de los efectos aleatorios de un modelo jerárquico con un enfoque Bayesiano. Se asumió efectos aleatorios distribuidos t-Student y parámetro de escala distribuidos half - Cauchy, SBeta2 y Uniforme. Se llevó a cabo un estudio de simulación para evaluar el comportamiento del error de estimación de los efectos del modelo. Con base a los resultados obtenidos, y bajo los diferentes escenarios en consideración, fue posible examinar el encogimiento de los parámetros a posteriori del mo- delo y se pudo establecer que en presencia de valores atípicos, esta medida es menor cuando los efectos se modelan con una distribución t de Student comparados con los obtenidos cuando se le asocia a los efectos una distribución Normal bajo las misma distribuciones a priori para el parámetro de escala. 3application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13655/12522Ciencia En Desarrollo; Vol. 13 No. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 65-78Ciencia en Desarrollo; Vol. 13 Núm. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 65-782462-76580121-7488Inferencia bayesianaModelo jerárquicoParámetro de escalaDistribución t-StudentBayesian InferenceHierarchical modelScale parametert-Student distributionAnalysis of the random effects estimator of a hierarchical model with heavy tailed priori distributionsAnálisis de las estimaciones de los efectos aleatorios de un modelo jerárquico con distribuciones a priori de colas pesadasinfo:eu-repo/semantics/articletexttextohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Rojas Mora, Jessica MariaRamírez Guevara, Isabel001/15335oai:repositorio.uptc.edu.co:001/153352025-07-18 10:56:15.311metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co