A predictive model for the identification of the volume fraction in two-phase flow
This work presents the use of artificial intelligence in multiphase flows, implementing a multilayer perceptron artificial neural network with back-propagation, and using the sigmoid tangent activation function, to generate a predictive model capable of obtaining the holdup of a two-phase flow compo...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15330
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417
https://repositorio.uptc.edu.co/handle/001/15330
- Palabra clave:
- Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial
Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUPTC2_7995585e7a655124017c63bedfaa5078 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/15330 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2021-09-072024-07-08T14:24:04Z2024-07-08T14:24:04Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1341710.19053/01217488.v12.n2.2021.13417https://repositorio.uptc.edu.co/handle/001/15330This work presents the use of artificial intelligence in multiphase flows, implementing a multilayer perceptron artificial neural network with back-propagation, and using the sigmoid tangent activation function, to generate a predictive model capable of obtaining the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe of 12 m. The artificial neural network is developed using an input layer, formed by the pressure differential in the line and the superficial velocities of the working fluids, also, it has two hidden layers and an outlet layer, which is made up of the volumetric fractions of the fluids. The best-performing predictive model shows a mean percentage absolute error of 3.07 % and a coefficient of determination R2 of 0.985 using 15 neurons in the two hidden layers of the neural network. The 56 experimental data used in the study were obtained in the laboratory LEMI EESC-USP (Brazil).Este trabajo presenta el uso de inteligencia artificial en flujos multifásicos, implementando una red neuronal artificial de perceptrón multicapa con retropropagación, y utilizando la función de activación tangente sigmoidea, para generar un modelo predictivo capaz de obtener la fracción volumétrica de un flujo bifásico compuesto por agua y aceite mineral en una tubería horizontal de 12 m. La red neuronal artificial se desarrolla a partir de una capa de entrada, formada por el diferencial de presión en la línea y las velocidades superficiales de los fluidos de trabajo, además, tiene dos capas ocultas y una capa de salida, que está formada por las fracciones volumétricas de los fluidos. El modelo predictivo de mejor rendimiento muestra un error medio porcentual absoluto del 3,07 % y un coeficiente de determinación R2 de 0,985 utilizando 15 neuronas en las dos capas ocultas de la red neuronal. Los 56 datos experimentales utilizados en el estudio se obtuvieron en el laboratorio LEMI EESC-USP (Brasil).application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417/11162Ciencia En Desarrollo; Vol. 12 No. 2 (2021): Vol 12, Núm.2 (2021): Julio-DiciembreCiencia en Desarrollo; Vol. 12 Núm. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre2462-76580121-7488Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficialMultiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speedA predictive model for the identification of the volume fraction in two-phase flowModelo predictivo para la identificación de la fracción volumétrica en flujo bifásicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Ruiz-Diaz, C MHernández-Cely, M. MGonzález-Estrada, O. A001/15330oai:repositorio.uptc.edu.co:001/153302025-07-18 10:56:15.314metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
A predictive model for the identification of the volume fraction in two-phase flow |
dc.title.es-ES.fl_str_mv |
Modelo predictivo para la identificación de la fracción volumétrica en flujo bifásico |
title |
A predictive model for the identification of the volume fraction in two-phase flow |
spellingShingle |
A predictive model for the identification of the volume fraction in two-phase flow Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed |
title_short |
A predictive model for the identification of the volume fraction in two-phase flow |
title_full |
A predictive model for the identification of the volume fraction in two-phase flow |
title_fullStr |
A predictive model for the identification of the volume fraction in two-phase flow |
title_full_unstemmed |
A predictive model for the identification of the volume fraction in two-phase flow |
title_sort |
A predictive model for the identification of the volume fraction in two-phase flow |
dc.subject.es-ES.fl_str_mv |
Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial |
topic |
Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed |
dc.subject.en-US.fl_str_mv |
Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed |
description |
This work presents the use of artificial intelligence in multiphase flows, implementing a multilayer perceptron artificial neural network with back-propagation, and using the sigmoid tangent activation function, to generate a predictive model capable of obtaining the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe of 12 m. The artificial neural network is developed using an input layer, formed by the pressure differential in the line and the superficial velocities of the working fluids, also, it has two hidden layers and an outlet layer, which is made up of the volumetric fractions of the fluids. The best-performing predictive model shows a mean percentage absolute error of 3.07 % and a coefficient of determination R2 of 0.985 using 15 neurons in the two hidden layers of the neural network. The 56 experimental data used in the study were obtained in the laboratory LEMI EESC-USP (Brazil). |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T14:24:04Z |
dc.date.available.none.fl_str_mv |
2024-07-08T14:24:04Z |
dc.date.none.fl_str_mv |
2021-09-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417 10.19053/01217488.v12.n2.2021.13417 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/15330 |
url |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417 https://repositorio.uptc.edu.co/handle/001/15330 |
identifier_str_mv |
10.19053/01217488.v12.n2.2021.13417 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417/11162 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Ciencia En Desarrollo; Vol. 12 No. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre |
dc.source.es-ES.fl_str_mv |
Ciencia en Desarrollo; Vol. 12 Núm. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre |
dc.source.none.fl_str_mv |
2462-7658 0121-7488 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633788412362752 |