A predictive model for the identification of the volume fraction in two-phase flow

This work presents the use of artificial intelligence in multiphase flows, implementing a multilayer perceptron artificial neural network with back-propagation, and using the sigmoid tangent activation function, to generate a predictive model capable of obtaining the holdup of a two-phase flow compo...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15330
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417
https://repositorio.uptc.edu.co/handle/001/15330
Palabra clave:
Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial
Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_7995585e7a655124017c63bedfaa5078
oai_identifier_str oai:repositorio.uptc.edu.co:001/15330
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2021-09-072024-07-08T14:24:04Z2024-07-08T14:24:04Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1341710.19053/01217488.v12.n2.2021.13417https://repositorio.uptc.edu.co/handle/001/15330This work presents the use of artificial intelligence in multiphase flows, implementing a multilayer perceptron artificial neural network with back-propagation, and using the sigmoid tangent activation function, to generate a predictive model capable of obtaining the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe of 12 m. The artificial neural network is developed using an input layer, formed by the pressure differential in the line and the superficial velocities of the working fluids, also, it has two hidden layers and an outlet layer, which is made up of the volumetric fractions of the fluids. The best-performing predictive model shows a mean percentage absolute error of 3.07 % and a coefficient of determination R2 of 0.985 using 15 neurons in the two hidden layers of the neural network. The 56 experimental data used in the study were obtained in the laboratory LEMI EESC-USP (Brazil).Este trabajo presenta el uso de inteligencia artificial en flujos multifásicos, implementando una red neuronal artificial de perceptrón multicapa con retropropagación, y utilizando la función de activación tangente sigmoidea, para generar un modelo predictivo capaz de obtener la fracción volumétrica de un flujo bifásico compuesto por agua y aceite mineral en una tubería horizontal de 12 m. La red neuronal artificial se desarrolla a partir de una capa de entrada, formada por el diferencial de presión en la línea y las velocidades superficiales de los fluidos de trabajo, además, tiene dos capas ocultas y una capa de salida, que está formada por las fracciones volumétricas de los fluidos. El modelo predictivo de mejor rendimiento muestra un error medio porcentual absoluto del 3,07 % y un coeficiente de determinación R2 de 0,985 utilizando 15 neuronas en las dos capas ocultas de la red neuronal. Los 56 datos experimentales utilizados en el estudio se obtuvieron en el laboratorio LEMI EESC-USP (Brasil).application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417/11162Ciencia En Desarrollo; Vol. 12 No. 2 (2021): Vol 12, Núm.2 (2021): Julio-DiciembreCiencia en Desarrollo; Vol. 12 Núm. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre2462-76580121-7488Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficialMultiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speedA predictive model for the identification of the volume fraction in two-phase flowModelo predictivo para la identificación de la fracción volumétrica en flujo bifásicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Ruiz-Diaz, C MHernández-Cely, M. MGonzález-Estrada, O. A001/15330oai:repositorio.uptc.edu.co:001/153302025-07-18 10:56:15.314metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv A predictive model for the identification of the volume fraction in two-phase flow
dc.title.es-ES.fl_str_mv Modelo predictivo para la identificación de la fracción volumétrica en flujo bifásico
title A predictive model for the identification of the volume fraction in two-phase flow
spellingShingle A predictive model for the identification of the volume fraction in two-phase flow
Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial
Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed
title_short A predictive model for the identification of the volume fraction in two-phase flow
title_full A predictive model for the identification of the volume fraction in two-phase flow
title_fullStr A predictive model for the identification of the volume fraction in two-phase flow
title_full_unstemmed A predictive model for the identification of the volume fraction in two-phase flow
title_sort A predictive model for the identification of the volume fraction in two-phase flow
dc.subject.es-ES.fl_str_mv Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial
topic Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial
Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed
dc.subject.en-US.fl_str_mv Multiphase flow, Volumetric fraction, Artificial Neural Network, Differential pressure, Surface speed
description This work presents the use of artificial intelligence in multiphase flows, implementing a multilayer perceptron artificial neural network with back-propagation, and using the sigmoid tangent activation function, to generate a predictive model capable of obtaining the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe of 12 m. The artificial neural network is developed using an input layer, formed by the pressure differential in the line and the superficial velocities of the working fluids, also, it has two hidden layers and an outlet layer, which is made up of the volumetric fractions of the fluids. The best-performing predictive model shows a mean percentage absolute error of 3.07 % and a coefficient of determination R2 of 0.985 using 15 neurons in the two hidden layers of the neural network. The 56 experimental data used in the study were obtained in the laboratory LEMI EESC-USP (Brazil).
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:04Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:04Z
dc.date.none.fl_str_mv 2021-09-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417
10.19053/01217488.v12.n2.2021.13417
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15330
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417
https://repositorio.uptc.edu.co/handle/001/15330
identifier_str_mv 10.19053/01217488.v12.n2.2021.13417
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13417/11162
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 12 No. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 12 Núm. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633788412362752