Estudio geométrico y analítico de las cónicas en algunas métricas
Spa: La presente investigación está referida especialmente al tratamiento de espacios métricos, enfocado en el estudio analítico y geométrico de las secciones cónicas usando como herramienta principal su definición como lugar geométrico en el conjunto ℝ2 , debido a que este tema ha sido trabajado de...
- Autores:
-
Antonio Peña, Jesús Adrián
Garzón Zipa, Cristian Julián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2017
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/8417
- Acceso en línea:
- http://repositorio.uptc.edu.co/handle/001/8417
- Palabra clave:
- Secciones cónicas
Geometría analítica
Curvas planas
Elipse
Parábola (Geometría)
Circunferencias
Licenciatura en Matemáticas - Tesis y disertaciones académicas
- Rights
- openAccess
- License
- Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia
id |
REPOUPTC2_72b20ca62a812176b634bd3dc9dad09e |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/8417 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio geométrico y analítico de las cónicas en algunas métricas |
title |
Estudio geométrico y analítico de las cónicas en algunas métricas |
spellingShingle |
Estudio geométrico y analítico de las cónicas en algunas métricas Secciones cónicas Geometría analítica Curvas planas Elipse Parábola (Geometría) Circunferencias Licenciatura en Matemáticas - Tesis y disertaciones académicas |
title_short |
Estudio geométrico y analítico de las cónicas en algunas métricas |
title_full |
Estudio geométrico y analítico de las cónicas en algunas métricas |
title_fullStr |
Estudio geométrico y analítico de las cónicas en algunas métricas |
title_full_unstemmed |
Estudio geométrico y analítico de las cónicas en algunas métricas |
title_sort |
Estudio geométrico y analítico de las cónicas en algunas métricas |
dc.creator.fl_str_mv |
Antonio Peña, Jesús Adrián Garzón Zipa, Cristian Julián |
dc.contributor.advisor.none.fl_str_mv |
Gómez Blanco, Wilmer Merardo |
dc.contributor.author.none.fl_str_mv |
Antonio Peña, Jesús Adrián Garzón Zipa, Cristian Julián |
dc.subject.armarc.none.fl_str_mv |
Secciones cónicas Geometría analítica Curvas planas Elipse Parábola (Geometría) Circunferencias Licenciatura en Matemáticas - Tesis y disertaciones académicas |
topic |
Secciones cónicas Geometría analítica Curvas planas Elipse Parábola (Geometría) Circunferencias Licenciatura en Matemáticas - Tesis y disertaciones académicas |
description |
Spa: La presente investigación está referida especialmente al tratamiento de espacios métricos, enfocado en el estudio analítico y geométrico de las secciones cónicas usando como herramienta principal su definición como lugar geométrico en el conjunto ℝ2 , debido a que este tema ha sido trabajado desde la métrica usual (distancia euclídea), queda una incógnita sobre el comportamiento (analítico y geométrico) de las cónicas en otros espacios métricos. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2022-02-02T19:24:48Z |
dc.date.available.none.fl_str_mv |
2022-02-02T19:24:48Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Antonio Peña, J. A. & Garzón Zipa, C. J. (2017). Estudio geométrico y analítico de las cónicas en algunas métricas. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia, tunja. |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uptc.edu.co/handle/001/8417 |
identifier_str_mv |
Antonio Peña, J. A. & Garzón Zipa, C. J. (2017). Estudio geométrico y analítico de las cónicas en algunas métricas. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia, tunja. |
url |
http://repositorio.uptc.edu.co/handle/001/8417 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Barraza, B., González, P., & Chavarro, S. (2014). Las cónicas en la geometría del taxista: una propuesta didáctica desde la teoría de los modos de pensamiento. Acta Latinoamericana de Matemática Educativa, Vol. 27, 779-786. Cortés G & García S. (2003). Investigación Documental.Guía de Autoaprendizaje, México, p. 19. D’amore, B. (2007). El papel de la Epistemología en la formación de profesores de Matemática de la escuela secundaria. Cuadernos del Seminario en educación, n. 8. Bogotá: Universidad Nacional de Colombia. p. 36 Fraleigh, J. (1980). Cálculo con Geometría Analítica. México: Fondo Educativo Interamericano S.A. p. 470. Hernández; Fernández, C & Baptista P. (2006). Metodología de la Investigación. México: McGraw-Hill-Interamericana. p. 39. Izquierdo, C. & Ardila, P. (2013). Estudio de la métrica de manhattan. Segmentos, rectas, rayos, circunferencias y algunos lugares geométricos en la geometría del taxista. (Tesis de Pregrado) Universidad Pedagógica Nacional, Bogotá. Lehmann, C. (1992). Geometría Analítica. México: LIMUSA. Loiola, G., & Costa, S. (2015). As Cônicas na Geometria do Taxi. Ciência e Natura. Revista do Centro de Ciências Naturais e Exatas - UFSM, p.179–191. Munkres, J. (2002). Topología. Madrid, España: Prentice Hall. Quintana, A. & Montgomery, W. (Eds.) (2006). Psicología: Tópicos de actualidad. Lima: UNMSM. Lipschutz, J. (1970). Teoría y problemas de Topología General (Serie de compendios Shaum). México, McGraw-Hill. Sánchez, J. (2004). Superficies cuádricas rotadas y vectores característicos. (Tesis de Pregrado). Universidad Industrial de Santander, Bucaramanga. p. 10. Herrero, P. (2001). Topología. 1° de matemáticas (Notas de clase). Universidad de Murcia, Murcia, España. p. 15-16. |
dc.rights.spa.fl_str_mv |
Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (103 páginas) : ilustraciones |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias de la Educación |
dc.publisher.place.spa.fl_str_mv |
Tunja |
dc.publisher.program.spa.fl_str_mv |
Licenciatura en Matemáticas |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.uptc.edu.co/bitstreams/7f2e6a42-bedb-4bd1-bf8b-2ddd41bd8415/download https://repositorio.uptc.edu.co/bitstreams/6ac62afb-b307-42f6-86ea-1fea9ddf7005/download https://repositorio.uptc.edu.co/bitstreams/6d957872-d245-4ce1-ab63-6a2bfc2b32e6/download https://repositorio.uptc.edu.co/bitstreams/c5c2aabd-b27a-45dd-95df-ebd58142f056/download https://repositorio.uptc.edu.co/bitstreams/48967f8b-5997-470c-95ee-f1beb983f0dd/download https://repositorio.uptc.edu.co/bitstreams/a2bd9637-f7a3-483b-9fb1-52d0289c5d96/download https://repositorio.uptc.edu.co/bitstreams/3e1e00ec-10bb-45f3-81eb-143ad18870ff/download https://repositorio.uptc.edu.co/bitstreams/7e9fd83f-9ec4-4af7-be6a-40d6ca0732e9/download |
bitstream.checksum.fl_str_mv |
c82856ff438cf7adbe65e329455115aa d311ff03660e8f2a549be800997e57a4 9f5eb859bd5c30bc88515135ce7ba417 88794144ff048353b359a3174871b0d5 abde164f1ab6569449aba4066a778904 9d51150c22aedc6e74745e7eaf1a07c6 4ba37535e40f31ae1346bfd6e29b8094 6fa793d8f8877133f538b9d87483d86b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
UPTC DSpace |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1814076236640550912 |
spelling |
Gómez Blanco, Wilmer MerardoAntonio Peña, Jesús AdriánGarzón Zipa, Cristian Julián2022-02-02T19:24:48Z2022-02-02T19:24:48Z2017Antonio Peña, J. A. & Garzón Zipa, C. J. (2017). Estudio geométrico y analítico de las cónicas en algunas métricas. (Trabajo de pregrado). Universidad Pedagógica y Tecnológica de Colombia, tunja.http://repositorio.uptc.edu.co/handle/001/8417Spa: La presente investigación está referida especialmente al tratamiento de espacios métricos, enfocado en el estudio analítico y geométrico de las secciones cónicas usando como herramienta principal su definición como lugar geométrico en el conjunto ℝ2 , debido a que este tema ha sido trabajado desde la métrica usual (distancia euclídea), queda una incógnita sobre el comportamiento (analítico y geométrico) de las cónicas en otros espacios métricos.Bibliografía y webgrafía: páginas 89-90PregradoLicenciado en Matemáticas1 recurso en línea (103 páginas) : ilustracionesapplication/pdfspaUniversidad Pedagógica y Tecnológica de ColombiaFacultad de Ciencias de la EducaciónTunjaLicenciatura en MatemáticasCopyright (c) 2017 Universidad Pedagógica y Tecnológica de ColombiaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Estudio geométrico y analítico de las cónicas en algunas métricasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Barraza, B., González, P., & Chavarro, S. (2014). Las cónicas en la geometría del taxista: una propuesta didáctica desde la teoría de los modos de pensamiento. Acta Latinoamericana de Matemática Educativa, Vol. 27, 779-786.Cortés G & García S. (2003). Investigación Documental.Guía de Autoaprendizaje, México, p. 19.D’amore, B. (2007). El papel de la Epistemología en la formación de profesores de Matemática de la escuela secundaria. Cuadernos del Seminario en educación, n. 8. Bogotá: Universidad Nacional de Colombia. p. 36Fraleigh, J. (1980). Cálculo con Geometría Analítica. México: Fondo Educativo Interamericano S.A. p. 470.Hernández; Fernández, C & Baptista P. (2006). Metodología de la Investigación. México: McGraw-Hill-Interamericana. p. 39.Izquierdo, C. & Ardila, P. (2013). Estudio de la métrica de manhattan. Segmentos, rectas, rayos, circunferencias y algunos lugares geométricos en la geometría del taxista. (Tesis de Pregrado) Universidad Pedagógica Nacional, Bogotá.Lehmann, C. (1992). Geometría Analítica. México: LIMUSA.Loiola, G., & Costa, S. (2015). As Cônicas na Geometria do Taxi. Ciência e Natura. Revista do Centro de Ciências Naturais e Exatas - UFSM, p.179–191.Munkres, J. (2002). Topología. Madrid, España: Prentice Hall.Quintana, A. & Montgomery, W. (Eds.) (2006). Psicología: Tópicos de actualidad. Lima: UNMSM.Lipschutz, J. (1970). Teoría y problemas de Topología General (Serie de compendios Shaum). México, McGraw-Hill.Sánchez, J. (2004). Superficies cuádricas rotadas y vectores característicos. (Tesis de Pregrado). Universidad Industrial de Santander, Bucaramanga. p. 10.Herrero, P. (2001). Topología. 1° de matemáticas (Notas de clase). Universidad de Murcia, Murcia, España. p. 15-16.Secciones cónicasGeometría analíticaCurvas planasElipseParábola (Geometría)CircunferenciasLicenciatura en Matemáticas - Tesis y disertaciones académicasDocentesEstudiantesORIGINALEstudio_geometrico_y_analitico_conicas.pdfEstudio_geometrico_y_analitico_conicas.pdfArchivo principalapplication/pdf2009602https://repositorio.uptc.edu.co/bitstreams/7f2e6a42-bedb-4bd1-bf8b-2ddd41bd8415/downloadc82856ff438cf7adbe65e329455115aaMD51A_WMGB_y_otro.pdfA_WMGB_y_otro.pdfAutorización publicaciónapplication/pdf64041https://repositorio.uptc.edu.co/bitstreams/6ac62afb-b307-42f6-86ea-1fea9ddf7005/downloadd311ff03660e8f2a549be800997e57a4MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.uptc.edu.co/bitstreams/6d957872-d245-4ce1-ab63-6a2bfc2b32e6/download9f5eb859bd5c30bc88515135ce7ba417MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-814798https://repositorio.uptc.edu.co/bitstreams/c5c2aabd-b27a-45dd-95df-ebd58142f056/download88794144ff048353b359a3174871b0d5MD54TEXTEstudio_geometrico_y_analitico_conicas.pdf.txtEstudio_geometrico_y_analitico_conicas.pdf.txtExtracted texttext/plain110526https://repositorio.uptc.edu.co/bitstreams/48967f8b-5997-470c-95ee-f1beb983f0dd/downloadabde164f1ab6569449aba4066a778904MD55A_WMGB_y_otro.pdf.txtA_WMGB_y_otro.pdf.txtExtracted texttext/plain5101https://repositorio.uptc.edu.co/bitstreams/a2bd9637-f7a3-483b-9fb1-52d0289c5d96/download9d51150c22aedc6e74745e7eaf1a07c6MD57THUMBNAILEstudio_geometrico_y_analitico_conicas.pdf.jpgEstudio_geometrico_y_analitico_conicas.pdf.jpgGenerated Thumbnailimage/jpeg4906https://repositorio.uptc.edu.co/bitstreams/3e1e00ec-10bb-45f3-81eb-143ad18870ff/download4ba37535e40f31ae1346bfd6e29b8094MD56A_WMGB_y_otro.pdf.jpgA_WMGB_y_otro.pdf.jpgGenerated Thumbnailimage/jpeg5349https://repositorio.uptc.edu.co/bitstreams/7e9fd83f-9ec4-4af7-be6a-40d6ca0732e9/download6fa793d8f8877133f538b9d87483d86bMD58001/8417oai:repositorio.uptc.edu.co:001/84172022-02-02 19:28:14.092http://creativecommons.org/licenses/by-nc-nd/2.5/co/Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaopen.accesshttps://repositorio.uptc.edu.coUPTC DSpacerepositorio.uptc@uptc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KMS4gRGVmaW5pY2lvbmVzCmEuCU9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLglMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLglBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuCVVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoyLiBEZXJlY2hvcyBkZSBVc29zIEhvbnJhZG9zIHkgZXhjZXBjaW9uZXMgTGVnYWxlcy4KTmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CmEuCVJlcHJvZHVjaXIgbGEgT2JyYSwgaW5jb3Jwb3JhciBsYSBPYnJhIGVuIHVuYSBvIG3DoXMgT2JyYXMgQ29sZWN0aXZhcywgeSByZXByb2R1Y2lyIGxhIE9icmEgaW5jb3Jwb3JhZGEgZW4gbGFzIE9icmFzIENvbGVjdGl2YXM7CmIuCURpc3RyaWJ1aXIgY29waWFzIG8gZm9ub2dyYW1hcyBkZSBsYXMgT2JyYXMsIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EsIGluY2x1ecOpbmRvbGFzIGNvbW8gaW5jb3Jwb3JhZGFzIGVuIE9icmFzIENvbGVjdGl2YXMsIHNlZ8O6biBjb3JyZXNwb25kYTsKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCjQuIFJlc3RyaWNjaW9uZXMuCkxhIGxpY2VuY2lhIG90b3JnYWRhIGVuIGxhIGFudGVyaW9yIFNlY2Npw7NuIDMgZXN0w6EgZXhwcmVzYW1lbnRlIHN1amV0YSB5IGxpbWl0YWRhIHBvciBsYXMgc2lndWllbnRlcyByZXN0cmljY2lvbmVzOgphLglVc3RlZCBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBzw7NsbyBiYWpvIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCB5IFVzdGVkIGRlYmUgaW5jbHVpciB1bmEgY29waWEgZGUgZXN0YSBsaWNlbmNpYSBvIGRlbCBJZGVudGlmaWNhZG9yIFVuaXZlcnNhbCBkZSBSZWN1cnNvcyBkZSBsYSBtaXNtYSBjb24gY2FkYSBjb3BpYSBkZSBsYSBPYnJhIHF1ZSBkaXN0cmlidXlhLCBleGhpYmEgcMO6YmxpY2FtZW50ZSwgZWplY3V0ZSBww7pibGljYW1lbnRlIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuIE5vIGVzIHBvc2libGUgb2ZyZWNlciBvIGltcG9uZXIgbmluZ3VuYSBjb25kaWNpw7NuIHNvYnJlIGxhIE9icmEgcXVlIGFsdGVyZSBvIGxpbWl0ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSBvIGVsIGVqZXJjaWNpbyBkZSBsb3MgZGVyZWNob3MgZGUgbG9zIGRlc3RpbmF0YXJpb3Mgb3RvcmdhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBObyBlcyBwb3NpYmxlIHN1YmxpY2VuY2lhciBsYSBPYnJhLiBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdG9zIHRvZG9zIGxvcyBhdmlzb3MgcXVlIGhhZ2FuIHJlZmVyZW5jaWEgYSBlc3RhIExpY2VuY2lhIHkgYSBsYSBjbMOhdXN1bGEgZGUgbGltaXRhY2nDs24gZGUgZ2FyYW50w61hcy4gVXN0ZWQgbm8gcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgY29uIGFsZ3VuYSBtZWRpZGEgdGVjbm9sw7NnaWNhIHF1ZSBjb250cm9sZSBlbCBhY2Nlc28gbyBsYSB1dGlsaXphY2nDs24gZGUgZWxsYSBkZSB1bmEgZm9ybWEgcXVlIHNlYSBpbmNvbnNpc3RlbnRlIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gTG8gYW50ZXJpb3Igc2UgYXBsaWNhIGEgbGEgT2JyYSBpbmNvcnBvcmFkYSBhIHVuYSBPYnJhIENvbGVjdGl2YSwgcGVybyBlc3RvIG5vIGV4aWdlIHF1ZSBsYSBPYnJhIENvbGVjdGl2YSBhcGFydGUgZGUgbGEgb2JyYSBtaXNtYSBxdWVkZSBzdWpldGEgYSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gU2kgVXN0ZWQgY3JlYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHByZXZpbyBhdmlzbyBkZSBjdWFscXVpZXIgTGljZW5jaWFudGUgZGViZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHBvc2libGUsIGVsaW1pbmFyIGRlIGxhIE9icmEgQ29sZWN0aXZhIGN1YWxxdWllciByZWZlcmVuY2lhIGEgZGljaG8gTGljZW5jaWFudGUgbyBhbCBBdXRvciBPcmlnaW5hbCwgc2Vnw7puIGxvIHNvbGljaXRhZG8gcG9yIGVsIExpY2VuY2lhbnRlIHkgY29uZm9ybWUgbG8gZXhpZ2UgbGEgY2zDoXVzdWxhIDQoYykuCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KYy4JU2kgdXN0ZWQgZGlzdHJpYnV5ZSwgZXhoaWJlIHDDumJsaWNhbWVudGUsIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBvIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBlbiBmb3JtYSBkaWdpdGFsIGxhIE9icmEgbyBjdWFscXVpZXIgT2JyYSBEZXJpdmFkYSB1IE9icmEgQ29sZWN0aXZhLCBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdGEgdG9kYSBsYSBpbmZvcm1hY2nDs24gZGUgZGVyZWNobyBkZSBhdXRvciBkZSBsYSBPYnJhIHkgcHJvcG9yY2lvbmFyLCBkZSBmb3JtYSByYXpvbmFibGUgc2Vnw7puIGVsIG1lZGlvIG8gbWFuZXJhIHF1ZSBVc3RlZCBlc3TDqSB1dGlsaXphbmRvOiAoaSkgZWwgbm9tYnJlIGRlbCBBdXRvciBPcmlnaW5hbCBzaSBlc3TDoSBwcm92aXN0byAobyBzZXVkw7NuaW1vLCBzaSBmdWVyZSBhcGxpY2FibGUpLCB5L28gKGlpKSBlbCBub21icmUgZGUgbGEgcGFydGUgbyBsYXMgcGFydGVzIHF1ZSBlbCBBdXRvciBPcmlnaW5hbCB5L28gZWwgTGljZW5jaWFudGUgaHViaWVyZW4gZGVzaWduYWRvIHBhcmEgbGEgYXRyaWJ1Y2nDs24gKHYuZy4sIHVuIGluc3RpdHV0byBwYXRyb2NpbmFkb3IsIGVkaXRvcmlhbCwgcHVibGljYWNpw7NuKSBlbiBsYSBpbmZvcm1hY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlbCBMaWNlbmNpYW50ZSwgdMOpcm1pbm9zIGRlIHNlcnZpY2lvcyBvIGRlIG90cmFzIGZvcm1hcyByYXpvbmFibGVzOyBlbCB0w610dWxvIGRlIGxhIE9icmEgc2kgZXN0w6EgcHJvdmlzdG87IGVuIGxhIG1lZGlkYSBkZSBsbyByYXpvbmFibGVtZW50ZSBmYWN0aWJsZSB5LCBzaSBlc3TDoSBwcm92aXN0bywgZWwgSWRlbnRpZmljYWRvciBVbmlmb3JtZSBkZSBSZWN1cnNvcyAoVW5pZm9ybSBSZXNvdXJjZSBJZGVudGlmaWVyKSBxdWUgZWwgTGljZW5jaWFudGUgZXNwZWNpZmljYSBwYXJhIHNlciBhc29jaWFkbyBjb24gbGEgT2JyYSwgc2Fsdm8gcXVlIHRhbCBVUkkgbm8gc2UgcmVmaWVyYSBhIGxhIG5vdGEgc29icmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIG8gYSBsYSBpbmZvcm1hY2nDs24gc29icmUgZWwgbGljZW5jaWFtaWVudG8gZGUgbGEgT2JyYTsgeSBlbiBlbCBjYXNvIGRlIHVuYSBPYnJhIERlcml2YWRhLCBhdHJpYnVpciBlbCBjcsOpZGl0byBpZGVudGlmaWNhbmRvIGVsIHVzbyBkZSBsYSBPYnJhIGVuIGxhIE9icmEgRGVyaXZhZGEgKHYuZy4sICJUcmFkdWNjacOzbiBGcmFuY2VzYSBkZSBsYSBPYnJhIGRlbCBBdXRvciBPcmlnaW5hbCwiIG8gIkd1acOzbiBDaW5lbWF0b2dyw6FmaWNvIGJhc2FkbyBlbiBsYSBPYnJhIG9yaWdpbmFsIGRlbCBBdXRvciBPcmlnaW5hbCIpLiBUYWwgY3LDqWRpdG8gcHVlZGUgc2VyIGltcGxlbWVudGFkbyBkZSBjdWFscXVpZXIgZm9ybWEgcmF6b25hYmxlOyBlbiBlbCBjYXNvLCBzaW4gZW1iYXJnbywgZGUgT2JyYXMgRGVyaXZhZGFzIHUgT2JyYXMgQ29sZWN0aXZhcywgdGFsIGNyw6lkaXRvIGFwYXJlY2Vyw6EsIGNvbW8gbcOtbmltbywgZG9uZGUgYXBhcmVjZSBlbCBjcsOpZGl0byBkZSBjdWFscXVpZXIgb3RybyBhdXRvciBjb21wYXJhYmxlIHkgZGUgdW5hIG1hbmVyYSwgYWwgbWVub3MsIHRhbiBkZXN0YWNhZGEgY29tbyBlbCBjcsOpZGl0byBkZSBvdHJvIGF1dG9yIGNvbXBhcmFibGUuCmQuCVBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgppaS4JUmVnYWzDrWFzIHBvciBGb25vZ3JhbWFzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIGxvcyBjb25zYWdyYWRvcyBwb3IgbGEgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KZS4JR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KNi4gTGltaXRhY2nDs24gZGUgcmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo3LiBUw6lybWluby4KYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuCVN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgo4LiBWYXJpb3MuCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuCVNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLglOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |