Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model

One of the main challenges of higher education institutions is continuously improving educational quality. In Colombia, the National Accreditation Council is in charge of evaluating if an institution provides high-quality education. One of the stages in obtaining recognition of high quality requires...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14361
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15211
https://repositorio.uptc.edu.co/handle/001/14361
Palabra clave:
Data Warehouses
Dimensional Modeling
Quality Guidelines
Research
Higher Education
bodegas de datos
Modelado Dimensional
Lineamientos de calidad
Investigación
Educación Superior
Rights
License
http://creativecommons.org/licenses/by/4.0
id REPOUPTC2_69aec0975d6555ba45065c64f073b29e
oai_identifier_str oai:repositorio.uptc.edu.co:001/14361
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
dc.title.es-ES.fl_str_mv Bodega de datos adaptable con base en el factor de investigación del modelo de acreditación institucional del CNA
title Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
spellingShingle Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
Data Warehouses
Dimensional Modeling
Quality Guidelines
Research
Higher Education
bodegas de datos
Modelado Dimensional
Lineamientos de calidad
Investigación
Educación Superior
title_short Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
title_full Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
title_fullStr Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
title_full_unstemmed Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
title_sort Adaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation Model
dc.subject.en-US.fl_str_mv Data Warehouses
Dimensional Modeling
Quality Guidelines
Research
Higher Education
topic Data Warehouses
Dimensional Modeling
Quality Guidelines
Research
Higher Education
bodegas de datos
Modelado Dimensional
Lineamientos de calidad
Investigación
Educación Superior
dc.subject.es-ES.fl_str_mv bodegas de datos
Modelado Dimensional
Lineamientos de calidad
Investigación
Educación Superior
description One of the main challenges of higher education institutions is continuously improving educational quality. In Colombia, the National Accreditation Council is in charge of evaluating if an institution provides high-quality education. One of the stages in obtaining recognition of high quality requires submitting a self-assessment report with quantitative data by the institution. This stage is very demanding for the institutions because it requires handling data extracted from various sources. Data warehouses are an alternative solution since they allow information from various sources to be centralized and support decision-making. This article proposes dimensional models adaptable to the availability of information sources for institutions and focuses on investigative processes. The research methodology used is the Iterative Research Pattern, where the problem was observed through the review of related studies and self-assessment reports submitted to the National Accreditation Council by public institutions. Subsequently, the requirements of the model were created and validated by a group of experts in institutional quality accreditation. Then, the solution was developed, and six adaptable dimensional research models were proposed using the MiPymes methodology, which is validated through a focus group of experts in dimensional modeling of data warehouses that considered the degree of adaptability of the models is 100% to the identified requirements.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:12:09Z
dc.date.available.none.fl_str_mv 2024-07-05T19:12:09Z
dc.date.none.fl_str_mv 2022-12-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a172
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15211
10.19053/01211129.v31.n62.2022.15211
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14361
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15211
https://repositorio.uptc.edu.co/handle/001/14361
identifier_str_mv 10.19053/01211129.v31.n62.2022.15211
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15211/12576
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15211/12579
dc.rights.en-US.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf89
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf89
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv text/xml
application/pdf
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e15211
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e15211
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633801909633024
spelling 2022-12-312024-07-05T19:12:09Z2024-07-05T19:12:09Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1521110.19053/01211129.v31.n62.2022.15211https://repositorio.uptc.edu.co/handle/001/14361One of the main challenges of higher education institutions is continuously improving educational quality. In Colombia, the National Accreditation Council is in charge of evaluating if an institution provides high-quality education. One of the stages in obtaining recognition of high quality requires submitting a self-assessment report with quantitative data by the institution. This stage is very demanding for the institutions because it requires handling data extracted from various sources. Data warehouses are an alternative solution since they allow information from various sources to be centralized and support decision-making. This article proposes dimensional models adaptable to the availability of information sources for institutions and focuses on investigative processes. The research methodology used is the Iterative Research Pattern, where the problem was observed through the review of related studies and self-assessment reports submitted to the National Accreditation Council by public institutions. Subsequently, the requirements of the model were created and validated by a group of experts in institutional quality accreditation. Then, the solution was developed, and six adaptable dimensional research models were proposed using the MiPymes methodology, which is validated through a focus group of experts in dimensional modeling of data warehouses that considered the degree of adaptability of the models is 100% to the identified requirements.Uno de los principales desafíos de las instituciones de educación superior es mejorar continuamente la calidad educativa. En Colombia, el Consejo Nacional de Acreditación se encarga de evaluar si una institución está brindando educación de alta calidad. Una de las etapas para obtener el reconocimiento de alta calidad requiere la presentación de un informe de autoevaluación con datos cuantitativos por parte de la institución. Esta etapa es muy exigente para las instituciones porque require el manejo de datos extraídos de diversas fuentes. Las bodegas de datos son una solución alternativa ya que permiten centralizar información de diversas fuentes y apoyar la toma de decisiones. Este artículo propone modelos dimensionales adaptables a la disponibilidad de fuentes de información para las instituciones y se enfoca en los procesos investigativos. La metodología de investigación utilizada es el Patrón de Investigación Iterativa, donde se observó el problema a través de la revisión de estudios relacionados e informes de autoevaluación presentados al Consejo Nacional de Acreditación por instituciones públicas. Posteriormente, los requisitos del modelo fueron creados y validados por un grupo de expertos en acreditación de calidad institucional. Luego se desarrolló la solución y se propusieron seis modelos de investigación dimensional adaptables utilizando la metodología MiPymes, los cuales son validados a través de un grupo focal de expertos en modelado dimensional de bodegas de datos que consider que el grado de adaptabilidad de los modelos a los requerimientos es del 100%.text/xmlapplication/pdfengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/15211/12576https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15211/12579Copyright (c) 2022 David-Antonio Fuentes-Vargas, Martha-Eliana Mendoza-Becerra, Luis-Carlos Gómez-Flórezhttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf89http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e15211Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e152112357-53280121-1129Data WarehousesDimensional ModelingQuality GuidelinesResearchHigher Educationbodegas de datosModelado DimensionalLineamientos de calidadInvestigaciónEducación SuperiorAdaptable Data Warehouse Based on the Research Factor of the NAC Institutional Accreditation ModelBodega de datos adaptable con base en el factor de investigación del modelo de acreditación institucional del CNAinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a172http://purl.org/coar/version/c_970fb48d4fbd8a85Fuentes-Vargas, David-AntonioMendoza-Becerra, Martha-ElianaGómez-Flórez, Luis-Carlos001/14361oai:repositorio.uptc.edu.co:001/143612025-07-18 11:53:14.492metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co