Spectral denoising in hyperspectral imaging using the discrete wavelet transform

The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise...

Full description

Autores:
Tipo de recurso:
http://purl.org/coar/resource_type/c_6789
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/10374
Acceso en línea:
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359
https://repositorio.uptc.edu.co/handle/001/10374
Palabra clave:
HSI
spectral denoising
wavelet transform
hyperspectral analysis
HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
Rights
License
http://purl.org/coar/access_right/c_abf290
id REPOUPTC2_670690c4b85edd42108e30f4a588ad96
oai_identifier_str oai:repositorio.uptc.edu.co:001/10374
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2021-08-152024-07-05T18:04:11Z2024-07-05T18:04:11Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1335910.19053/20278306.v11.n3.2021.13359https://repositorio.uptc.edu.co/handle/001/10374The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise present in a bank of 180 hyperspectral images of mango leaves acquired in the laboratory, and the implementation of a denoising technique based on the discrete wavelet transform. The noise analysis consisted in the identification of the highest noisy bands, while the performance of the technique was based on the PSNR and SNR metrics. As a result, it was determined that the spectral noise was present at the ends of the spectrum (417-421nm and 969-994nm) and that the Neigh-Shrink method achieved a SNR of the order of 1011 with respect to the order of 102 of the original spectrum.El uso de sensores hiperespectrales ha tomado relevancia en la agricultura, debido a su potencial en el manejo fitosanitario de cultivos. Sin embargo, estos sensores son sensibles al registro de ruido espectral, lo cual dificulta su aplicación real. Por lo anterior, este trabajo se centró en el análisis del ruido espectral presente en un banco de 180 imágenes hiperespectrales de hojas de mango adquiridas en laboratorio, y la implementación de una técnica de reducción de ruido basada en la transformada discreta de wavelet. El análisis de ruido consistió en la identificación de las bandas de mayor ruido, mientras que el desempeño de la técnica fue medido con las métricas PSNR y SNR. Como resultado, se determinó que el ruido espectral estuvo presente en los extremos del espectro (417-421nm y 969-994nm), mientras que el método Neigh-Shrink alcanzó un SNR del orden de 1011 con respecto al orden de 102 del espectro original.application/pdftext/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11825https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11826Revista de Investigación, Desarrollo e Innovación; Vol. 11 No. 3 (2021): Julio-Diciembre; 601-616Revista de Investigación, Desarrollo e Innovación; Vol. 11 Núm. 3 (2021): Julio-Diciembre; 601-6162389-94172027-8306HSIspectral denoisingwavelet transformhyperspectral analysisHSIreducción de ruido espectraltransformada waveletanálisis hiperespectralSpectral denoising in hyperspectral imaging using the discrete wavelet transformReducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discretainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6789http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a373http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf290http://purl.org/coar/access_right/c_abf2Rincón-Fonseca, Rafael IvánVelásquez-Hernández, Carlos AlbertoPrieto-Ortiz, Flavio Augusto001/10374oai:repositorio.uptc.edu.co:001/103742025-07-18 11:51:36.774metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Spectral denoising in hyperspectral imaging using the discrete wavelet transform
dc.title.es-ES.fl_str_mv Reducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discreta
title Spectral denoising in hyperspectral imaging using the discrete wavelet transform
spellingShingle Spectral denoising in hyperspectral imaging using the discrete wavelet transform
HSI
spectral denoising
wavelet transform
hyperspectral analysis
HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
title_short Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_full Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_fullStr Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_full_unstemmed Spectral denoising in hyperspectral imaging using the discrete wavelet transform
title_sort Spectral denoising in hyperspectral imaging using the discrete wavelet transform
dc.subject.en-US.fl_str_mv HSI
spectral denoising
wavelet transform
hyperspectral analysis
topic HSI
spectral denoising
wavelet transform
hyperspectral analysis
HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
dc.subject.es-ES.fl_str_mv HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
description The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise present in a bank of 180 hyperspectral images of mango leaves acquired in the laboratory, and the implementation of a denoising technique based on the discrete wavelet transform. The noise analysis consisted in the identification of the highest noisy bands, while the performance of the technique was based on the PSNR and SNR metrics. As a result, it was determined that the spectral noise was present at the ends of the spectrum (417-421nm and 969-994nm) and that the Neigh-Shrink method achieved a SNR of the order of 1011 with respect to the order of 102 of the original spectrum.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-05T18:04:11Z
dc.date.available.none.fl_str_mv 2024-07-05T18:04:11Z
dc.date.none.fl_str_mv 2021-08-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6789
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a373
format http://purl.org/coar/resource_type/c_6789
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359
10.19053/20278306.v11.n3.2021.13359
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/10374
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359
https://repositorio.uptc.edu.co/handle/001/10374
identifier_str_mv 10.19053/20278306.v11.n3.2021.13359
dc.language.none.fl_str_mv eng
spa
dc.language.iso.spa.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11825
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11826
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf290
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf290
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 11 No. 3 (2021): Julio-Diciembre; 601-616
dc.source.es-ES.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 11 Núm. 3 (2021): Julio-Diciembre; 601-616
dc.source.none.fl_str_mv 2389-9417
2027-8306
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633890715631616