Spectral denoising in hyperspectral imaging using the discrete wavelet transform
The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise...
- Autores:
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_6789
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/10374
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359
https://repositorio.uptc.edu.co/handle/001/10374
- Palabra clave:
- HSI
spectral denoising
wavelet transform
hyperspectral analysis
HSI
reducción de ruido espectral
transformada wavelet
análisis hiperespectral
- Rights
- License
- http://purl.org/coar/access_right/c_abf290
id |
REPOUPTC2_670690c4b85edd42108e30f4a588ad96 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/10374 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2021-08-152024-07-05T18:04:11Z2024-07-05T18:04:11Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1335910.19053/20278306.v11.n3.2021.13359https://repositorio.uptc.edu.co/handle/001/10374The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise present in a bank of 180 hyperspectral images of mango leaves acquired in the laboratory, and the implementation of a denoising technique based on the discrete wavelet transform. The noise analysis consisted in the identification of the highest noisy bands, while the performance of the technique was based on the PSNR and SNR metrics. As a result, it was determined that the spectral noise was present at the ends of the spectrum (417-421nm and 969-994nm) and that the Neigh-Shrink method achieved a SNR of the order of 1011 with respect to the order of 102 of the original spectrum.El uso de sensores hiperespectrales ha tomado relevancia en la agricultura, debido a su potencial en el manejo fitosanitario de cultivos. Sin embargo, estos sensores son sensibles al registro de ruido espectral, lo cual dificulta su aplicación real. Por lo anterior, este trabajo se centró en el análisis del ruido espectral presente en un banco de 180 imágenes hiperespectrales de hojas de mango adquiridas en laboratorio, y la implementación de una técnica de reducción de ruido basada en la transformada discreta de wavelet. El análisis de ruido consistió en la identificación de las bandas de mayor ruido, mientras que el desempeño de la técnica fue medido con las métricas PSNR y SNR. Como resultado, se determinó que el ruido espectral estuvo presente en los extremos del espectro (417-421nm y 969-994nm), mientras que el método Neigh-Shrink alcanzó un SNR del orden de 1011 con respecto al orden de 102 del espectro original.application/pdftext/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11825https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11826Revista de Investigación, Desarrollo e Innovación; Vol. 11 No. 3 (2021): Julio-Diciembre; 601-616Revista de Investigación, Desarrollo e Innovación; Vol. 11 Núm. 3 (2021): Julio-Diciembre; 601-6162389-94172027-8306HSIspectral denoisingwavelet transformhyperspectral analysisHSIreducción de ruido espectraltransformada waveletanálisis hiperespectralSpectral denoising in hyperspectral imaging using the discrete wavelet transformReducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discretainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6789http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a373http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf290http://purl.org/coar/access_right/c_abf2Rincón-Fonseca, Rafael IvánVelásquez-Hernández, Carlos AlbertoPrieto-Ortiz, Flavio Augusto001/10374oai:repositorio.uptc.edu.co:001/103742025-07-18 11:51:36.774metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform |
dc.title.es-ES.fl_str_mv |
Reducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discreta |
title |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform |
spellingShingle |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform HSI spectral denoising wavelet transform hyperspectral analysis HSI reducción de ruido espectral transformada wavelet análisis hiperespectral |
title_short |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform |
title_full |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform |
title_fullStr |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform |
title_full_unstemmed |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform |
title_sort |
Spectral denoising in hyperspectral imaging using the discrete wavelet transform |
dc.subject.en-US.fl_str_mv |
HSI spectral denoising wavelet transform hyperspectral analysis |
topic |
HSI spectral denoising wavelet transform hyperspectral analysis HSI reducción de ruido espectral transformada wavelet análisis hiperespectral |
dc.subject.es-ES.fl_str_mv |
HSI reducción de ruido espectral transformada wavelet análisis hiperespectral |
description |
The use of hyperspectral sensors has gained relevance in agriculture due to its potential in the phytosanitary management of crops. However, these sensors are sensitive to spectral noise, which makes their real application difficult. Therefore, this work focused on the analysis of the spectral noise present in a bank of 180 hyperspectral images of mango leaves acquired in the laboratory, and the implementation of a denoising technique based on the discrete wavelet transform. The noise analysis consisted in the identification of the highest noisy bands, while the performance of the technique was based on the PSNR and SNR metrics. As a result, it was determined that the spectral noise was present at the ends of the spectrum (417-421nm and 969-994nm) and that the Neigh-Shrink method achieved a SNR of the order of 1011 with respect to the order of 102 of the original spectrum. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T18:04:11Z |
dc.date.available.none.fl_str_mv |
2024-07-05T18:04:11Z |
dc.date.none.fl_str_mv |
2021-08-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6789 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a373 |
format |
http://purl.org/coar/resource_type/c_6789 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359 10.19053/20278306.v11.n3.2021.13359 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/10374 |
url |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359 https://repositorio.uptc.edu.co/handle/001/10374 |
identifier_str_mv |
10.19053/20278306.v11.n3.2021.13359 |
dc.language.none.fl_str_mv |
eng spa |
dc.language.iso.spa.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11825 https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/13359/11826 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf290 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf290 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 11 No. 3 (2021): Julio-Diciembre; 601-616 |
dc.source.es-ES.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 11 Núm. 3 (2021): Julio-Diciembre; 601-616 |
dc.source.none.fl_str_mv |
2389-9417 2027-8306 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633890715631616 |