Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques

Estimation of solar radiation is essential to help decision-makers in the planning of isolated solar energy farms or connected to electricity distribution networks to take advantage of renewable energy sources, reduce the impact produced by climate change, and increase coverage rates in electricity...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14284
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11751
https://repositorio.uptc.edu.co/handle/001/14284
Palabra clave:
deep learning
machine learning
photovoltaic systems
prediction model
solar radiation
supervised learning
aprendizaje automático
aprendizaje profundo
aprendizaje supervisado
modelo de predicción
radiación solar
sistemas fotovoltaicos
Rights
License
http://purl.org/coar/access_right/c_abf153
id REPOUPTC2_63cda75700ccf4338338acf32f1b5a2d
oai_identifier_str oai:repositorio.uptc.edu.co:001/14284
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
dc.title.es-ES.fl_str_mv Predicción de radiación solar en sistemas fotovoltaicos utilizando técnicas de aprendizaje automático
title Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
spellingShingle Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
deep learning
machine learning
photovoltaic systems
prediction model
solar radiation
supervised learning
aprendizaje automático
aprendizaje profundo
aprendizaje supervisado
modelo de predicción
radiación solar
sistemas fotovoltaicos
title_short Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
title_full Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
title_fullStr Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
title_full_unstemmed Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
title_sort Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
dc.subject.en-US.fl_str_mv deep learning
machine learning
photovoltaic systems
prediction model
solar radiation
supervised learning
topic deep learning
machine learning
photovoltaic systems
prediction model
solar radiation
supervised learning
aprendizaje automático
aprendizaje profundo
aprendizaje supervisado
modelo de predicción
radiación solar
sistemas fotovoltaicos
dc.subject.es-ES.fl_str_mv aprendizaje automático
aprendizaje profundo
aprendizaje supervisado
modelo de predicción
radiación solar
sistemas fotovoltaicos
description Estimation of solar radiation is essential to help decision-makers in the planning of isolated solar energy farms or connected to electricity distribution networks to take advantage of renewable energy sources, reduce the impact produced by climate change, and increase coverage rates in electricity service. The number of existing measurement stations is insufficient to cover the entire geography of a region, and many of them are not capturing solar radiation data. Therefore, it is important to use mathematical, statistical, and artificial intelligence models, which allow predicting solar radiation from meteorological data available. In this work, datasets taken from measurement stations located in the cities of Cali and Villavicencio were used, in addition to a dataset generated by the World Weather Online API for the town of Mocoa, to carry out solar radiation estimations using different machine learning techniques for regression and classification to evaluate their performance. Although in most related works researchers used deep learning to predict solar radiation, this work showed that, while artificial neural networks are the most widely used technique, other machine learning algorithms such as Random Forest, Vector Support Machines and AdaBoost, also provide estimates with sufficient precision to be used in this field of study.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.none.fl_str_mv 2020-09-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a236
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11751
10.19053/01211129.v29.n54.2020.11751
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14284
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11751
https://repositorio.uptc.edu.co/handle/001/14284
identifier_str_mv 10.19053/01211129.v29.n54.2020.11751
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11751/9617
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11751/10008
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf153
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf153
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11751
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e11751
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633823976914944
spelling 2020-09-182024-07-05T19:11:55Z2024-07-05T19:11:55Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1175110.19053/01211129.v29.n54.2020.11751https://repositorio.uptc.edu.co/handle/001/14284Estimation of solar radiation is essential to help decision-makers in the planning of isolated solar energy farms or connected to electricity distribution networks to take advantage of renewable energy sources, reduce the impact produced by climate change, and increase coverage rates in electricity service. The number of existing measurement stations is insufficient to cover the entire geography of a region, and many of them are not capturing solar radiation data. Therefore, it is important to use mathematical, statistical, and artificial intelligence models, which allow predicting solar radiation from meteorological data available. In this work, datasets taken from measurement stations located in the cities of Cali and Villavicencio were used, in addition to a dataset generated by the World Weather Online API for the town of Mocoa, to carry out solar radiation estimations using different machine learning techniques for regression and classification to evaluate their performance. Although in most related works researchers used deep learning to predict solar radiation, this work showed that, while artificial neural networks are the most widely used technique, other machine learning algorithms such as Random Forest, Vector Support Machines and AdaBoost, also provide estimates with sufficient precision to be used in this field of study.La estimación de la radiación solar es fundamental para quienes participan en la planificación de granjas de energía solar, ya sean aisladas o conectadas a las redes de distribución eléctrica. Esto para el aprovechamiento de las fuentes de energía renovables, reducir el impacto producido por el cambio climático, e incrementar los índices de cobertura en el servicio eléctrico. De igual manera, el número de estaciones de medición existentes es insuficiente para cubrir toda la geografía de una región, y muchas de ellas no están capturando datos de radiación solar. Por consiguiente, es importante hacer uso de modelos matemáticos, estadísticos y de inteligencia artificial que permitan predecir la radiación solar a partir de datos meteorológicos disponibles. En este trabajo se utilizaron conjuntos de datos tomados de estaciones de medición ubicadas en las ciudades de Cali y Villavicencio, además de un conjunto de datos generado por la API World Weather Online para la ciudad de Mocoa. La razón fue realizar estimaciones de radiación solar utilizando distintas técnicas de aprendizaje automático para regresión y clasificación; el principal objetivo fue evaluar su desempeño. Aunque en la mayoría de los trabajos relacionados los investigadores utilizaron el aprendizaje profundo para la predicción de la radiación solar, este estudio demostró que, si bien las redes neuronales artificiales son la técnica más utilizada, otros algoritmos de aprendizaje automático como Random Forest, Máquinas de Soporte Vectorial y AdaBoost también proporcionan estimaciones con suficiente precisión para ser utilizados en este campo de estudio.application/pdfapplication/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/11751/9617https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11751/10008Copyright (c) 2020 Luis Eduardo Ordoñez-Palacios, Daniel Andrés León-Vargas, M.Sc., Víctor Andrés Bucheli-Guerrero, Ph. D., Hugo Armando Ordoñez-Eraso, Ph. D.http://purl.org/coar/access_right/c_abf153http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11751Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e117512357-53280121-1129deep learningmachine learningphotovoltaic systemsprediction modelsolar radiationsupervised learningaprendizaje automáticoaprendizaje profundoaprendizaje supervisadomodelo de predicciónradiación solarsistemas fotovoltaicosSolar Radiation Prediction on Photovoltaic Systems Using Machine Learning TechniquesPredicción de radiación solar en sistemas fotovoltaicos utilizando técnicas de aprendizaje automáticoinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a236http://purl.org/coar/version/c_970fb48d4fbd8a85Ordoñez-Palacios, Luis EduardoLeón-Vargas, Daniel AndrésBucheli-Guerrero, Víctor AndrésOrdoñez-Eraso, Hugo Armando001/14284oai:repositorio.uptc.edu.co:001/142842025-07-18 11:53:37.51metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co