Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are st...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14327
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845
https://repositorio.uptc.edu.co/handle/001/14327
- Palabra clave:
- Kernel functions
multispectral satellite images
Landsat
Support Vector Machines
Classification
photovoltaic energy
clasificación
energía fotovoltaica
funciones Kernel
imágenes satelitales multiespectrales
Landsat
máquinas de soporte vectorial
- Rights
- License
- Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torres
id |
REPOUPTC2_54a4a4746513a8a0a9f74a7399a8d3da |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14327 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2021-12-202024-07-05T19:11:59Z2024-07-05T19:11:59Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1384510.19053/01211129.v30.n58.2021.13845https://repositorio.uptc.edu.co/handle/001/14327Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are studies for obtaining regression models with alternative Kernel functions, their performance for classification models is unknown and it is here where this research focuses. The study couples alternative Kernel functions to the support vector machines (SVM) algorithm for classification problems, where the best configuration for these algorithms is explored to finally obtain a set of irradiance maps zoned by class.Debido a la creciente demanda de energía y al eminente calentamiento global, existe especial interés en la predicción de irradiancia basada en la reflectancia obtenida de satélites como el Landsat de la NASA, ya que permite saber dónde es más eficiente colocar receptores fotovoltaicos. Si bien existen estudios para la obtención de modelos de regresión con funciones Kernel alternativas, se desconoce su desempeño para modelos de clasificación, y es aquí donde se enfoca esta investigación. El estudio combina funciones de Kernel alternativas al algoritmo máquinas de soporte vectorial (SVM) para problemas de clasificación, donde se explora la mejor configuración para estos algoritmos, y así finalmente obtener un conjunto de mapas de irradiancia zonificados por clase.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11286https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11306Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torreshttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf18http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13845Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e138452357-53280121-1129Kernel functionsmultispectral satellite imagesLandsatSupport Vector MachinesClassificationphotovoltaic energyclasificaciónenergía fotovoltaicafunciones Kernelimágenes satelitales multiespectralesLandsatmáquinas de soporte vectorialComparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite ImagesComparativo de funciones Kernel en la clasificación de zonas de irradiancia a partir de imágenes satelitales multiespectralesinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a101http://purl.org/coar/version/c_970fb48d4fbd8a85Pachajoa, Dalila-MercedesMora-Paz, HéctorMayorca-Torres, Dagoberto001/14327oai:repositorio.uptc.edu.co:001/143272025-07-18 11:53:14.311metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images |
dc.title.es-ES.fl_str_mv |
Comparativo de funciones Kernel en la clasificación de zonas de irradiancia a partir de imágenes satelitales multiespectrales |
title |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images |
spellingShingle |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images Kernel functions multispectral satellite images Landsat Support Vector Machines Classification photovoltaic energy clasificación energía fotovoltaica funciones Kernel imágenes satelitales multiespectrales Landsat máquinas de soporte vectorial |
title_short |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images |
title_full |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images |
title_fullStr |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images |
title_full_unstemmed |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images |
title_sort |
Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images |
dc.subject.en-US.fl_str_mv |
Kernel functions multispectral satellite images Landsat Support Vector Machines Classification photovoltaic energy |
topic |
Kernel functions multispectral satellite images Landsat Support Vector Machines Classification photovoltaic energy clasificación energía fotovoltaica funciones Kernel imágenes satelitales multiespectrales Landsat máquinas de soporte vectorial |
dc.subject.es-ES.fl_str_mv |
clasificación energía fotovoltaica funciones Kernel imágenes satelitales multiespectrales Landsat máquinas de soporte vectorial |
description |
Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are studies for obtaining regression models with alternative Kernel functions, their performance for classification models is unknown and it is here where this research focuses. The study couples alternative Kernel functions to the support vector machines (SVM) algorithm for classification problems, where the best configuration for these algorithms is explored to finally obtain a set of irradiance maps zoned by class. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:11:59Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:11:59Z |
dc.date.none.fl_str_mv |
2021-12-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a101 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845 10.19053/01211129.v30.n58.2021.13845 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14327 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845 https://repositorio.uptc.edu.co/handle/001/14327 |
identifier_str_mv |
10.19053/01211129.v30.n58.2021.13845 |
dc.language.none.fl_str_mv |
eng |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11286 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11306 |
dc.rights.en-US.fl_str_mv |
Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torres http://creativecommons.org/licenses/by/4.0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf18 |
rights_invalid_str_mv |
Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torres http://creativecommons.org/licenses/by/4.0 http://purl.org/coar/access_right/c_abf18 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13845 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e13845 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633781889171456 |