Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images

Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are st...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14327
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845
https://repositorio.uptc.edu.co/handle/001/14327
Palabra clave:
Kernel functions
multispectral satellite images
Landsat
Support Vector Machines
Classification
photovoltaic energy
clasificación
energía fotovoltaica
funciones Kernel
imágenes satelitales multiespectrales
Landsat
máquinas de soporte vectorial
Rights
License
Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torres
id REPOUPTC2_54a4a4746513a8a0a9f74a7399a8d3da
oai_identifier_str oai:repositorio.uptc.edu.co:001/14327
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2021-12-202024-07-05T19:11:59Z2024-07-05T19:11:59Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1384510.19053/01211129.v30.n58.2021.13845https://repositorio.uptc.edu.co/handle/001/14327Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are studies for obtaining regression models with alternative Kernel functions, their performance for classification models is unknown and it is here where this research focuses. The study couples alternative Kernel functions to the support vector machines (SVM) algorithm for classification problems, where the best configuration for these algorithms is explored to finally obtain a set of irradiance maps zoned by class.Debido a la creciente demanda de energía y al eminente calentamiento global, existe especial interés en la predicción de irradiancia basada en la reflectancia obtenida de satélites como el Landsat de la NASA, ya que permite saber dónde es más eficiente colocar receptores fotovoltaicos. Si bien existen estudios para la obtención de modelos de regresión con funciones Kernel alternativas, se desconoce su desempeño para modelos de clasificación, y es aquí donde se enfoca esta investigación. El estudio combina funciones de Kernel alternativas al algoritmo máquinas de soporte vectorial (SVM) para problemas de clasificación, donde se explora la mejor configuración para estos algoritmos, y así finalmente obtener un conjunto de mapas de irradiancia zonificados por clase.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11286https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11306Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torreshttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf18http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13845Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e138452357-53280121-1129Kernel functionsmultispectral satellite imagesLandsatSupport Vector MachinesClassificationphotovoltaic energyclasificaciónenergía fotovoltaicafunciones Kernelimágenes satelitales multiespectralesLandsatmáquinas de soporte vectorialComparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite ImagesComparativo de funciones Kernel en la clasificación de zonas de irradiancia a partir de imágenes satelitales multiespectralesinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a101http://purl.org/coar/version/c_970fb48d4fbd8a85Pachajoa, Dalila-MercedesMora-Paz, HéctorMayorca-Torres, Dagoberto001/14327oai:repositorio.uptc.edu.co:001/143272025-07-18 11:53:14.311metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
dc.title.es-ES.fl_str_mv Comparativo de funciones Kernel en la clasificación de zonas de irradiancia a partir de imágenes satelitales multiespectrales
title Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
spellingShingle Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
Kernel functions
multispectral satellite images
Landsat
Support Vector Machines
Classification
photovoltaic energy
clasificación
energía fotovoltaica
funciones Kernel
imágenes satelitales multiespectrales
Landsat
máquinas de soporte vectorial
title_short Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
title_full Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
title_fullStr Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
title_full_unstemmed Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
title_sort Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images
dc.subject.en-US.fl_str_mv Kernel functions
multispectral satellite images
Landsat
Support Vector Machines
Classification
photovoltaic energy
topic Kernel functions
multispectral satellite images
Landsat
Support Vector Machines
Classification
photovoltaic energy
clasificación
energía fotovoltaica
funciones Kernel
imágenes satelitales multiespectrales
Landsat
máquinas de soporte vectorial
dc.subject.es-ES.fl_str_mv clasificación
energía fotovoltaica
funciones Kernel
imágenes satelitales multiespectrales
Landsat
máquinas de soporte vectorial
description Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are studies for obtaining regression models with alternative Kernel functions, their performance for classification models is unknown and it is here where this research focuses. The study couples alternative Kernel functions to the support vector machines (SVM) algorithm for classification problems, where the best configuration for these algorithms is explored to finally obtain a set of irradiance maps zoned by class.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:59Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:59Z
dc.date.none.fl_str_mv 2021-12-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a101
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845
10.19053/01211129.v30.n58.2021.13845
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14327
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845
https://repositorio.uptc.edu.co/handle/001/14327
identifier_str_mv 10.19053/01211129.v30.n58.2021.13845
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11286
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13845/11306
dc.rights.en-US.fl_str_mv Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torres
http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf18
rights_invalid_str_mv Copyright (c) 2021 Dalila-Mercedes Pachajoa, Héctor Mora-Paz, Dagoberto Mayorca-Torres
http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf18
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13845
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e13845
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633781889171456