Interpretability in the Field of Plant Disease Detection: A Review
The early detection of diseases in plants through artificial intelligence techniques has been a very important technological advance for agriculture since, through machine learning and optimization algorithms, it has been possible to increase the yield of various crops in several countries around th...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14321
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495
https://repositorio.uptc.edu.co/handle/001/14321
- Palabra clave:
- Machine Learning
Classification
Early detection of diseases
Interpretability
Image processing
Aprendizaje Automático
Clasificación
Detección temprana de enfermedades
Interpretabilidad
Procesamiento de imágenes
- Rights
- License
- Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderón
id |
REPOUPTC2_53f562f9d6d3caa1bfa4576233f1ef5c |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14321 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.en-US.fl_str_mv |
Interpretability in the Field of Plant Disease Detection: A Review |
dc.title.es-ES.fl_str_mv |
Interpretabilidad en el campo de la detección de enfermedades en las plantas: Una revisión |
title |
Interpretability in the Field of Plant Disease Detection: A Review |
spellingShingle |
Interpretability in the Field of Plant Disease Detection: A Review Machine Learning Classification Early detection of diseases Interpretability Image processing Aprendizaje Automático Clasificación Detección temprana de enfermedades Interpretabilidad Procesamiento de imágenes |
title_short |
Interpretability in the Field of Plant Disease Detection: A Review |
title_full |
Interpretability in the Field of Plant Disease Detection: A Review |
title_fullStr |
Interpretability in the Field of Plant Disease Detection: A Review |
title_full_unstemmed |
Interpretability in the Field of Plant Disease Detection: A Review |
title_sort |
Interpretability in the Field of Plant Disease Detection: A Review |
dc.subject.en-US.fl_str_mv |
Machine Learning Classification Early detection of diseases Interpretability Image processing |
topic |
Machine Learning Classification Early detection of diseases Interpretability Image processing Aprendizaje Automático Clasificación Detección temprana de enfermedades Interpretabilidad Procesamiento de imágenes |
dc.subject.es-ES.fl_str_mv |
Aprendizaje Automático Clasificación Detección temprana de enfermedades Interpretabilidad Procesamiento de imágenes |
description |
The early detection of diseases in plants through artificial intelligence techniques has been a very important technological advance for agriculture since, through machine learning and optimization algorithms, it has been possible to increase the yield of various crops in several countries around the world. Different researchers have focused their efforts on developing models that allow supporting the task of detecting diseases in plants as a solution to the traditional techniques used by farmers. In this systematic literature review, an analysis of the most relevant articles is presented, in which image processing techniques and machine learning were used to detect diseases by means of images of the leaves of different crops. In turn, an analysis of the interpretability and precision of these methods is carried out, considering each phase of the image processing, segmentation, feature extraction and learning processes of each model. In this way, there is evidence of a void in the field of interpretability since the authors have focused mainly on obtaining good results in their models, beyond providing the user with a clear explanation of the characteristics of the model. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:11:59Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:11:59Z |
dc.date.none.fl_str_mv |
2021-11-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a395 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495 10.19053/01211129.v30.n58.2021.13495 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14321 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495 https://repositorio.uptc.edu.co/handle/001/14321 |
identifier_str_mv |
10.19053/01211129.v30.n58.2021.13495 |
dc.language.none.fl_str_mv |
eng |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11176 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11300 |
dc.rights.en-US.fl_str_mv |
Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderón http://creativecommons.org/licenses/by/4.0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf312 |
rights_invalid_str_mv |
Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderón http://creativecommons.org/licenses/by/4.0 http://purl.org/coar/access_right/c_abf312 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13495 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e13495 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633871814000640 |
spelling |
2021-11-272024-07-05T19:11:59Z2024-07-05T19:11:59Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1349510.19053/01211129.v30.n58.2021.13495https://repositorio.uptc.edu.co/handle/001/14321The early detection of diseases in plants through artificial intelligence techniques has been a very important technological advance for agriculture since, through machine learning and optimization algorithms, it has been possible to increase the yield of various crops in several countries around the world. Different researchers have focused their efforts on developing models that allow supporting the task of detecting diseases in plants as a solution to the traditional techniques used by farmers. In this systematic literature review, an analysis of the most relevant articles is presented, in which image processing techniques and machine learning were used to detect diseases by means of images of the leaves of different crops. In turn, an analysis of the interpretability and precision of these methods is carried out, considering each phase of the image processing, segmentation, feature extraction and learning processes of each model. In this way, there is evidence of a void in the field of interpretability since the authors have focused mainly on obtaining good results in their models, beyond providing the user with a clear explanation of the characteristics of the model.La detección temprana de enfermedades en las plantas mediante técnicas de inteligencia artificial, ha sido un avance tecnológico muy importante para la agricultura, ya que por medio del aprendizaje automático y algoritmos de optimización, se ha logrado incrementar el rendimiento de diversos cultivos en varios países alrededor del mundo. Distintos investigadores han enfocado sus esfuerzos en desarrollar modelos que permitan apoyar la tarea de detección de enfermedades en las plantas como solución a las técnicas tradicionales utilizadas por los agricultores. En esta revisión sistemática de literatura se presenta un análisis de los artículos más relevantes, en los que se usaron técnicas de procesamiento de imágenes y aprendizaje automático, para detectar enfermedades por medio de imágenes de las hojas de diferentes cultivos, y a su vez se lleva a cabo un análisis de interpretabilidad y precisión de estos métodos, teniendo en cuenta cada fase las fases de procesamiento de imágenes, segmentación, extracción de características y aprendizaje, de cada uno de los modelos. De esta manera se evidencia vacío en el campo de la interpretabilidad, ya que los autores se han enfocado principalmente en obtener buenos resultados en sus modelos, más allá de brindar al usuario una explicación clara de las características propias del modelo.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11176https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11300Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderónhttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf312http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13495Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e134952357-53280121-1129Machine LearningClassificationEarly detection of diseasesInterpretabilityImage processingAprendizaje AutomáticoClasificaciónDetección temprana de enfermedadesInterpretabilidadProcesamiento de imágenesInterpretability in the Field of Plant Disease Detection: A ReviewInterpretabilidad en el campo de la detección de enfermedades en las plantas: Una revisióninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a395http://purl.org/coar/version/c_970fb48d4fbd8a85Leal-Lara, Daniel-DavidBarón-Velandia, JulioRocha-Calderón, Camilo-Enrique001/14321oai:repositorio.uptc.edu.co:001/143212025-07-18 11:53:51.145metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |