Interpretability in the Field of Plant Disease Detection: A Review

The early detection of diseases in plants through artificial intelligence techniques has been a very important technological advance for agriculture since, through machine learning and optimization algorithms, it has been possible to increase the yield of various crops in several countries around th...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14321
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495
https://repositorio.uptc.edu.co/handle/001/14321
Palabra clave:
Machine Learning
Classification
Early detection of diseases
Interpretability
Image processing
Aprendizaje Automático
Clasificación
Detección temprana de enfermedades
Interpretabilidad
Procesamiento de imágenes
Rights
License
Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderón
id REPOUPTC2_53f562f9d6d3caa1bfa4576233f1ef5c
oai_identifier_str oai:repositorio.uptc.edu.co:001/14321
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Interpretability in the Field of Plant Disease Detection: A Review
dc.title.es-ES.fl_str_mv Interpretabilidad en el campo de la detección de enfermedades en las plantas: Una revisión
title Interpretability in the Field of Plant Disease Detection: A Review
spellingShingle Interpretability in the Field of Plant Disease Detection: A Review
Machine Learning
Classification
Early detection of diseases
Interpretability
Image processing
Aprendizaje Automático
Clasificación
Detección temprana de enfermedades
Interpretabilidad
Procesamiento de imágenes
title_short Interpretability in the Field of Plant Disease Detection: A Review
title_full Interpretability in the Field of Plant Disease Detection: A Review
title_fullStr Interpretability in the Field of Plant Disease Detection: A Review
title_full_unstemmed Interpretability in the Field of Plant Disease Detection: A Review
title_sort Interpretability in the Field of Plant Disease Detection: A Review
dc.subject.en-US.fl_str_mv Machine Learning
Classification
Early detection of diseases
Interpretability
Image processing
topic Machine Learning
Classification
Early detection of diseases
Interpretability
Image processing
Aprendizaje Automático
Clasificación
Detección temprana de enfermedades
Interpretabilidad
Procesamiento de imágenes
dc.subject.es-ES.fl_str_mv Aprendizaje Automático
Clasificación
Detección temprana de enfermedades
Interpretabilidad
Procesamiento de imágenes
description The early detection of diseases in plants through artificial intelligence techniques has been a very important technological advance for agriculture since, through machine learning and optimization algorithms, it has been possible to increase the yield of various crops in several countries around the world. Different researchers have focused their efforts on developing models that allow supporting the task of detecting diseases in plants as a solution to the traditional techniques used by farmers. In this systematic literature review, an analysis of the most relevant articles is presented, in which image processing techniques and machine learning were used to detect diseases by means of images of the leaves of different crops. In turn, an analysis of the interpretability and precision of these methods is carried out, considering each phase of the image processing, segmentation, feature extraction and learning processes of each model. In this way, there is evidence of a void in the field of interpretability since the authors have focused mainly on obtaining good results in their models, beyond providing the user with a clear explanation of the characteristics of the model.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:59Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:59Z
dc.date.none.fl_str_mv 2021-11-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a395
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495
10.19053/01211129.v30.n58.2021.13495
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14321
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495
https://repositorio.uptc.edu.co/handle/001/14321
identifier_str_mv 10.19053/01211129.v30.n58.2021.13495
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11176
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11300
dc.rights.en-US.fl_str_mv Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderón
http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf312
rights_invalid_str_mv Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderón
http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf312
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13495
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e13495
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633871814000640
spelling 2021-11-272024-07-05T19:11:59Z2024-07-05T19:11:59Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1349510.19053/01211129.v30.n58.2021.13495https://repositorio.uptc.edu.co/handle/001/14321The early detection of diseases in plants through artificial intelligence techniques has been a very important technological advance for agriculture since, through machine learning and optimization algorithms, it has been possible to increase the yield of various crops in several countries around the world. Different researchers have focused their efforts on developing models that allow supporting the task of detecting diseases in plants as a solution to the traditional techniques used by farmers. In this systematic literature review, an analysis of the most relevant articles is presented, in which image processing techniques and machine learning were used to detect diseases by means of images of the leaves of different crops. In turn, an analysis of the interpretability and precision of these methods is carried out, considering each phase of the image processing, segmentation, feature extraction and learning processes of each model. In this way, there is evidence of a void in the field of interpretability since the authors have focused mainly on obtaining good results in their models, beyond providing the user with a clear explanation of the characteristics of the model.La detección temprana de enfermedades en las plantas mediante técnicas de inteligencia artificial, ha sido un avance tecnológico muy importante para la agricultura, ya que por medio del aprendizaje automático y algoritmos de optimización, se ha logrado incrementar el rendimiento de diversos cultivos en varios países alrededor del mundo. Distintos investigadores han enfocado sus esfuerzos en desarrollar modelos que permitan apoyar la tarea de detección de enfermedades en las plantas como solución a las técnicas tradicionales utilizadas por los agricultores. En esta revisión sistemática de literatura se presenta un análisis de los artículos más relevantes, en los que se usaron técnicas de procesamiento de imágenes y aprendizaje automático, para detectar enfermedades por medio de imágenes de las hojas de diferentes cultivos, y a su vez se lleva a cabo un análisis de interpretabilidad y precisión de estos métodos, teniendo en cuenta cada fase las fases de procesamiento de imágenes, segmentación, extracción de características y aprendizaje, de cada uno de los modelos. De esta manera se evidencia vacío en el campo de la interpretabilidad, ya que los autores se han enfocado principalmente en obtener buenos resultados en sus modelos, más allá de brindar al usuario una explicación clara de las características propias del modelo.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11176https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13495/11300Copyright (c) 2021 Daniel-David Leal-Lara, Julio Barón-Velandia, Camilo-Enrique Rocha-Calderónhttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf312http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13495Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e134952357-53280121-1129Machine LearningClassificationEarly detection of diseasesInterpretabilityImage processingAprendizaje AutomáticoClasificaciónDetección temprana de enfermedadesInterpretabilidadProcesamiento de imágenesInterpretability in the Field of Plant Disease Detection: A ReviewInterpretabilidad en el campo de la detección de enfermedades en las plantas: Una revisióninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a395http://purl.org/coar/version/c_970fb48d4fbd8a85Leal-Lara, Daniel-DavidBarón-Velandia, JulioRocha-Calderón, Camilo-Enrique001/14321oai:repositorio.uptc.edu.co:001/143212025-07-18 11:53:51.145metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co