Comparison of some estimations of Kendall’s t for interval-censored bivariate data
Bivariate failure data are common in reliability and survival studies, where estimation of dependency is often an important step in data analysis. In the literature, it known that the correlation coefficients measure the linear relationship between two variables, but strong non-linear relationship c...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15389
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15586
https://repositorio.uptc.edu.co/handle/001/15389
- Palabra clave:
- Cópula
medidas de asociación
modelo de mezcla Gaussiana
supervivencia
Association measures
copula
Gaussian mixture model
survival
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUPTC2_534c2323234994f03bdc42901927d1c2 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/15389 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2024-04-092024-07-08T14:24:10Z2024-07-08T14:24:10Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1558610.19053/01217488.v15.n1.2024.15586https://repositorio.uptc.edu.co/handle/001/15389Bivariate failure data are common in reliability and survival studies, where estimation of dependency is often an important step in data analysis. In the literature, it known that the correlation coefficients measure the linear relationship between two variables, but strong non-linear relationship can also exist between them. Kendall's $\tau$ concordance coefficient has become a useful tool for bivariate data analysis, which is used in nonparametric tests of independence and as a complementary measures of association. In the analysis of reliability data, there is a phenomenon that occurs when the value of the lifetime is partially known, which is known as censoring. In this paper, two estimation methods of Kendall's t are compared via simulation, one of them assuming normality in marginal distributions and adjusting them individually and the other based on copulas (Gaussian and Clayton), where the bivariate data are interval censored. The comparison is made using the mean squared error and the median absolute deviation. The results show that the method based on the copula approximation generally produces more precise estimates than the method of individual adjustment of the marginals.Los datos de falla bivariados son comunes en estudios de confiabilidad y supervivencia, donde la estimación de la fuerza de dependencia es a menudo un paso importante en el análisis de los datos. En la literatura, se ha establecido que los coeficientes de correlación miden la relación lineal entre dos variables, pero también pueden existir relaciones no lineales fuertes entre ellas. El coeficiente de concordancia t de Kendall se ha convertido en una herramienta útil para el análisis de datos bivariados, la cual es usada en pruebas no paramétricas de independencia y como una medida complementaria de asociación. En el análisis de datos de confiabilidad, hay un fenómeno que ocurre cuando el valor de las observaciones se conoce parcialmente, lo cual se conoce comocensura. En este trabajo, se comparan vía simulación dos métodos de estimación del t de Kendall, una de ellas suponiendo normalidad en las distribuciones marginales y ajustándolas individualmente, y la otra basada en cópulas (Gaussiana y Clayton), donde los datos bivariados están censurados a intervalo. La comparación se hace mediante el error cuadrático medio y la mediana de la desviación absoluta. Los resultados muestran que el método basado en la aproximación cópula produce en general estimaciones más precisas que el método de ajuste individual de las marginales.spaUniversidad Pedagógica y Tecnológica de ColombiaCiencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-JunioCiencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio2462-76580121-7488Cópulamedidas de asociaciónmodelo de mezcla GaussianasupervivenciaAssociation measurescopulaGaussian mixture modelsurvivalComparison of some estimations of Kendall’s t for interval-censored bivariate dataComparación de algunas estimaciones del t de Kendall para datos bivariados con censura a intervaloinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Serna-Morales , Jessica K.Jaramillo Elorza, Mario César Lopera-Gómez, Carlos M.001/15389oai:repositorio.uptc.edu.co:001/153892025-07-18 10:56:33.071metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data |
dc.title.es-ES.fl_str_mv |
Comparación de algunas estimaciones del t de Kendall para datos bivariados con censura a intervalo |
title |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data |
spellingShingle |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data Cópula medidas de asociación modelo de mezcla Gaussiana supervivencia Association measures copula Gaussian mixture model survival |
title_short |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data |
title_full |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data |
title_fullStr |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data |
title_full_unstemmed |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data |
title_sort |
Comparison of some estimations of Kendall’s t for interval-censored bivariate data |
dc.subject.es-ES.fl_str_mv |
Cópula medidas de asociación modelo de mezcla Gaussiana supervivencia |
topic |
Cópula medidas de asociación modelo de mezcla Gaussiana supervivencia Association measures copula Gaussian mixture model survival |
dc.subject.en-US.fl_str_mv |
Association measures copula Gaussian mixture model survival |
description |
Bivariate failure data are common in reliability and survival studies, where estimation of dependency is often an important step in data analysis. In the literature, it known that the correlation coefficients measure the linear relationship between two variables, but strong non-linear relationship can also exist between them. Kendall's $\tau$ concordance coefficient has become a useful tool for bivariate data analysis, which is used in nonparametric tests of independence and as a complementary measures of association. In the analysis of reliability data, there is a phenomenon that occurs when the value of the lifetime is partially known, which is known as censoring. In this paper, two estimation methods of Kendall's t are compared via simulation, one of them assuming normality in marginal distributions and adjusting them individually and the other based on copulas (Gaussian and Clayton), where the bivariate data are interval censored. The comparison is made using the mean squared error and the median absolute deviation. The results show that the method based on the copula approximation generally produces more precise estimates than the method of individual adjustment of the marginals. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T14:24:10Z |
dc.date.available.none.fl_str_mv |
2024-07-08T14:24:10Z |
dc.date.none.fl_str_mv |
2024-04-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15586 10.19053/01217488.v15.n1.2024.15586 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/15389 |
url |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15586 https://repositorio.uptc.edu.co/handle/001/15389 |
identifier_str_mv |
10.19053/01217488.v15.n1.2024.15586 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Ciencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio |
dc.source.es-ES.fl_str_mv |
Ciencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio |
dc.source.none.fl_str_mv |
2462-7658 0121-7488 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633832684290048 |