Comparison of some estimations of Kendall’s t for interval-censored bivariate data

Bivariate failure data are common in reliability and survival studies, where estimation of dependency is often an important step in data analysis. In the literature, it known that the correlation coefficients measure the linear relationship between two variables, but strong non-linear relationship c...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15389
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15586
https://repositorio.uptc.edu.co/handle/001/15389
Palabra clave:
Cópula
medidas de asociación
modelo de mezcla Gaussiana
supervivencia
Association measures
copula
Gaussian mixture model
survival
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_534c2323234994f03bdc42901927d1c2
oai_identifier_str oai:repositorio.uptc.edu.co:001/15389
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2024-04-092024-07-08T14:24:10Z2024-07-08T14:24:10Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1558610.19053/01217488.v15.n1.2024.15586https://repositorio.uptc.edu.co/handle/001/15389Bivariate failure data are common in reliability and survival studies, where estimation of dependency is often an important step in data analysis. In the literature, it known that the correlation coefficients measure the linear relationship between two variables, but strong non-linear relationship can also exist between them. Kendall's $\tau$ concordance coefficient has become a useful tool for bivariate data analysis, which is used in nonparametric tests of independence and as a complementary measures of association. In the analysis of reliability data, there is a phenomenon that occurs when the value of the lifetime is partially known, which is known as censoring. In this paper, two estimation methods of Kendall's t are compared via simulation, one of them assuming normality in marginal distributions and adjusting them individually and the other based on copulas (Gaussian and Clayton), where the bivariate data are interval censored. The comparison is made using the mean squared error and the median absolute deviation. The results show that the method based on the copula approximation generally produces more precise estimates than the method of individual adjustment of the marginals.Los datos de falla bivariados son comunes en estudios de confiabilidad y supervivencia, donde la estimación de la fuerza de dependencia es a menudo un paso importante en el análisis de los datos. En la literatura, se ha establecido que los coeficientes de correlación miden la relación lineal entre dos variables, pero también pueden existir relaciones no lineales fuertes entre ellas. El coeficiente de concordancia t de Kendall se ha convertido en una herramienta útil para el análisis de datos bivariados, la cual es usada en pruebas no paramétricas de independencia y como una medida complementaria de asociación. En el análisis de datos de confiabilidad, hay un fenómeno que ocurre cuando el valor de las observaciones se conoce parcialmente, lo cual se conoce comocensura. En este trabajo, se comparan vía simulación dos métodos de estimación del t de Kendall, una de ellas suponiendo normalidad en las distribuciones marginales y ajustándolas individualmente, y la otra basada en cópulas (Gaussiana y Clayton), donde los datos bivariados están censurados a intervalo. La comparación se hace mediante el error cuadrático medio y la mediana de la desviación absoluta. Los resultados muestran que el método basado en la aproximación cópula produce en general estimaciones más precisas que el método de ajuste individual de las marginales.spaUniversidad Pedagógica y Tecnológica de ColombiaCiencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-JunioCiencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio2462-76580121-7488Cópulamedidas de asociaciónmodelo de mezcla GaussianasupervivenciaAssociation measurescopulaGaussian mixture modelsurvivalComparison of some estimations of Kendall’s t for interval-censored bivariate dataComparación de algunas estimaciones del t de Kendall para datos bivariados con censura a intervaloinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Serna-Morales , Jessica K.Jaramillo Elorza, Mario César Lopera-Gómez, Carlos M.001/15389oai:repositorio.uptc.edu.co:001/153892025-07-18 10:56:33.071metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Comparison of some estimations of Kendall’s t for interval-censored bivariate data
dc.title.es-ES.fl_str_mv Comparación de algunas estimaciones del t de Kendall para datos bivariados con censura a intervalo
title Comparison of some estimations of Kendall’s t for interval-censored bivariate data
spellingShingle Comparison of some estimations of Kendall’s t for interval-censored bivariate data
Cópula
medidas de asociación
modelo de mezcla Gaussiana
supervivencia
Association measures
copula
Gaussian mixture model
survival
title_short Comparison of some estimations of Kendall’s t for interval-censored bivariate data
title_full Comparison of some estimations of Kendall’s t for interval-censored bivariate data
title_fullStr Comparison of some estimations of Kendall’s t for interval-censored bivariate data
title_full_unstemmed Comparison of some estimations of Kendall’s t for interval-censored bivariate data
title_sort Comparison of some estimations of Kendall’s t for interval-censored bivariate data
dc.subject.es-ES.fl_str_mv Cópula
medidas de asociación
modelo de mezcla Gaussiana
supervivencia
topic Cópula
medidas de asociación
modelo de mezcla Gaussiana
supervivencia
Association measures
copula
Gaussian mixture model
survival
dc.subject.en-US.fl_str_mv Association measures
copula
Gaussian mixture model
survival
description Bivariate failure data are common in reliability and survival studies, where estimation of dependency is often an important step in data analysis. In the literature, it known that the correlation coefficients measure the linear relationship between two variables, but strong non-linear relationship can also exist between them. Kendall's $\tau$ concordance coefficient has become a useful tool for bivariate data analysis, which is used in nonparametric tests of independence and as a complementary measures of association. In the analysis of reliability data, there is a phenomenon that occurs when the value of the lifetime is partially known, which is known as censoring. In this paper, two estimation methods of Kendall's t are compared via simulation, one of them assuming normality in marginal distributions and adjusting them individually and the other based on copulas (Gaussian and Clayton), where the bivariate data are interval censored. The comparison is made using the mean squared error and the median absolute deviation. The results show that the method based on the copula approximation generally produces more precise estimates than the method of individual adjustment of the marginals.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:10Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:10Z
dc.date.none.fl_str_mv 2024-04-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15586
10.19053/01217488.v15.n1.2024.15586
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15389
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15586
https://repositorio.uptc.edu.co/handle/001/15389
identifier_str_mv 10.19053/01217488.v15.n1.2024.15586
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633832684290048