Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions

The objective of the research was to analyze the role of machine data learning in systematic literature reviews. The Natural Language Processing technique called topic modeling was applied to a set of titles and abstracts collected from the Scopus database. Specifically, the Latent Dirichlet Assignm...

Full description

Autores:
Tipo de recurso:
http://purl.org/coar/resource_type/c_6718
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/10398
Acceso en línea:
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15271
https://repositorio.uptc.edu.co/handle/001/10398
Palabra clave:
topic modeling;
machine learning;
systematic reviews;
Latent Dirichlet Allocation
modelado de tópicos;
aprendizaje automático;
revisiones sistemáticas;
Asignación Latente de Dirichlet
Rights
License
Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
id REPOUPTC2_38a26c1aa1650da4a25aafd5366ec8e6
oai_identifier_str oai:repositorio.uptc.edu.co:001/10398
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2022-08-152024-07-05T18:04:14Z2024-07-05T18:04:14Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1527110.19053/20278306.v12.n2.2022.15271https://repositorio.uptc.edu.co/handle/001/10398The objective of the research was to analyze the role of machine data learning in systematic literature reviews. The Natural Language Processing technique called topic modeling was applied to a set of titles and abstracts collected from the Scopus database. Specifically, the Latent Dirichlet Assignment (LDA) technique was used, from which it was possible to discover and understand the underlying themes in the collection of documents. The results showed the usefulness of the technique used in the exploratory literature review, by allowing the results to be grouped by theme. Likewise, it was possible to identify the specific areas and activities where machine learning has been applied the most, in relation to literature reviews. It is concluded that the LDA technique is an easy-to-use strategy and whose results allow a wide collection of documents to be approached in a systematic and coherent manner, notably reducing the review time.El objetivo de la investigación fue analizar el papel del aprendizaje automático de datos en las revisiones sistemáticas de literatura. Se aplicó la técnica de Procesamiento de Lenguaje Natural denominada modelado de tópicos, a un conjunto de títulos y resúmenes recopilados de la base de datos Scopus. Especificamente se utilizó la técnica de Asignación Latente de Dirichlet (LDA), a partir de la cual se lograron descubrir y comprender las temáticas subyacentes en la colección de documentos. Los resultados mostraron la utilidad de la técnica utilizada en la revisión exploratoria de literatura, al permitir agrupar los resultados por temáticas. Igualmente, se pudo identificar las áreas y actividades específicas donde más se ha aplicado el aprendizaje automático, en lo referente a revisiones de literatura. Se concluye que la técnica LDA es una estrategia fácil de utilizar y cuyos resultados permiten abordar una amplia colección de documentos de manera sistemática y coherente, reduciendo notablemente el tiempo de la revisión.application/pdftext/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15271/12481https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15271/13214Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovaciónhttp://purl.org/coar/access_right/c_abf219http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 2 (2022): Julio-Diciembre; 279-292Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 2 (2022): Julio-Diciembre; 279-2922389-94172027-8306topic modeling;machine learning;systematic reviews;Latent Dirichlet Allocationmodelado de tópicos;aprendizaje automático;revisiones sistemáticas;Asignación Latente de DirichletModeling of topics applied to the analysis of the paper of automatic learning in systemic revisionsModelado de tópicos aplicado al análisis del papel del aprendizaje automático en revisiones sistemáticasinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6718http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a302http://purl.org/coar/version/c_970fb48d4fbd8a85Grisales-Aguirre, Andrés MauricioFigueroa-Vallejo, Carlos Julio001/10398oai:repositorio.uptc.edu.co:001/103982025-07-18 11:51:36.544metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
dc.title.es-ES.fl_str_mv Modelado de tópicos aplicado al análisis del papel del aprendizaje automático en revisiones sistemáticas
title Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
spellingShingle Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
topic modeling;
machine learning;
systematic reviews;
Latent Dirichlet Allocation
modelado de tópicos;
aprendizaje automático;
revisiones sistemáticas;
Asignación Latente de Dirichlet
title_short Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
title_full Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
title_fullStr Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
title_full_unstemmed Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
title_sort Modeling of topics applied to the analysis of the paper of automatic learning in systemic revisions
dc.subject.en-US.fl_str_mv topic modeling;
machine learning;
systematic reviews;
Latent Dirichlet Allocation
topic topic modeling;
machine learning;
systematic reviews;
Latent Dirichlet Allocation
modelado de tópicos;
aprendizaje automático;
revisiones sistemáticas;
Asignación Latente de Dirichlet
dc.subject.es-ES.fl_str_mv modelado de tópicos;
aprendizaje automático;
revisiones sistemáticas;
Asignación Latente de Dirichlet
description The objective of the research was to analyze the role of machine data learning in systematic literature reviews. The Natural Language Processing technique called topic modeling was applied to a set of titles and abstracts collected from the Scopus database. Specifically, the Latent Dirichlet Assignment (LDA) technique was used, from which it was possible to discover and understand the underlying themes in the collection of documents. The results showed the usefulness of the technique used in the exploratory literature review, by allowing the results to be grouped by theme. Likewise, it was possible to identify the specific areas and activities where machine learning has been applied the most, in relation to literature reviews. It is concluded that the LDA technique is an easy-to-use strategy and whose results allow a wide collection of documents to be approached in a systematic and coherent manner, notably reducing the review time.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T18:04:14Z
dc.date.available.none.fl_str_mv 2024-07-05T18:04:14Z
dc.date.none.fl_str_mv 2022-08-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6718
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a302
format http://purl.org/coar/resource_type/c_6718
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15271
10.19053/20278306.v12.n2.2022.15271
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/10398
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15271
https://repositorio.uptc.edu.co/handle/001/10398
identifier_str_mv 10.19053/20278306.v12.n2.2022.15271
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15271/12481
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15271/13214
dc.rights.es-ES.fl_str_mv Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf219
rights_invalid_str_mv Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
http://purl.org/coar/access_right/c_abf219
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 2 (2022): Julio-Diciembre; 279-292
dc.source.es-ES.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 2 (2022): Julio-Diciembre; 279-292
dc.source.none.fl_str_mv 2389-9417
2027-8306
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633863776665600