Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks

The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applyin...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14335
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037
https://repositorio.uptc.edu.co/handle/001/14335
Palabra clave:
Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
Rights
License
http://creativecommons.org/licenses/by/4.0
id REPOUPTC2_34b974b59bfe1e29ad7492e2f6c53da1
oai_identifier_str oai:repositorio.uptc.edu.co:001/14335
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
dc.title.es-ES.fl_str_mv Determinación del diámetro interior de tuberías a presión para sistemas de agua potable utilizando redes neuronales artificiales
title Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
spellingShingle Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
title_short Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_full Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_fullStr Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_full_unstemmed Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
title_sort Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
dc.subject.en-US.fl_str_mv Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
topic Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
dc.subject.es-ES.fl_str_mv Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
description The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applying the energy equation for a hydraulic system composed of two tanks connected to a pipe of constant diameter and accepting the Colebrook-White and the Darcy-Weisbach equations, an undetermined expression is obtained since more unknowns than equations are established. This problem is solved by implementing a nested loop for the coefficient of friction and the diameter. This article proposes an Artificial Neural Network (ANN) implementing the Levenberg-Marquardt backpropagation method to estimate the diameter from the log-sigmoidal transfer function under stationary flow conditions. The training signals set consists of 5,000 random data that follow a normal distribution, calculated in Visual Basic (®Excel). The statistics used for the network evaluation correspond to the mean square error, the regression analysis, and the cross-entropy function. The architecture with the best performance had a hidden layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson Correlation Coefficient. The cross-validation of the neural scheme was carried out from 1,000 independent input signals from the training set, obtaining an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with a relative error equal to 0.01% concerning the values ​​obtained with ®Epanet, evidencing the generalizability of the optimized system.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:12:06Z
dc.date.available.none.fl_str_mv 2024-07-05T19:12:06Z
dc.date.none.fl_str_mv 2022-03-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a394
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037
10.19053/01211129.v31.n59.2022.14037
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14335
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037
https://repositorio.uptc.edu.co/handle/001/14335
identifier_str_mv 10.19053/01211129.v31.n59.2022.14037
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11574
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11680
dc.rights.en-US.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf311
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf311
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 No. 59 (2022): January-March 2022 (Continuous Publication); e14037
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 Núm. 59 (2022): Enero-Marzo 2022 (Publicación Continua); e14037
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633871102017536
spelling 2022-03-252024-07-05T19:12:06Z2024-07-05T19:12:06Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1403710.19053/01211129.v31.n59.2022.14037https://repositorio.uptc.edu.co/handle/001/14335The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applying the energy equation for a hydraulic system composed of two tanks connected to a pipe of constant diameter and accepting the Colebrook-White and the Darcy-Weisbach equations, an undetermined expression is obtained since more unknowns than equations are established. This problem is solved by implementing a nested loop for the coefficient of friction and the diameter. This article proposes an Artificial Neural Network (ANN) implementing the Levenberg-Marquardt backpropagation method to estimate the diameter from the log-sigmoidal transfer function under stationary flow conditions. The training signals set consists of 5,000 random data that follow a normal distribution, calculated in Visual Basic (®Excel). The statistics used for the network evaluation correspond to the mean square error, the regression analysis, and the cross-entropy function. The architecture with the best performance had a hidden layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson Correlation Coefficient. The cross-validation of the neural scheme was carried out from 1,000 independent input signals from the training set, obtaining an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with a relative error equal to 0.01% concerning the values ​​obtained with ®Epanet, evidencing the generalizability of the optimized system.El diámetro en sistemas a presión de agua potable es posible determinarlo mediante una ecuación polinómica de quinto grado. Como variables de entrada se tiene: Q: caudal (m3/s), H: pérdida de carga (m); L: longitud de la tubería (m); ε: rugosidad (m), : viscosidad cinemática (m2/s) y Ʃk: sumatoria de coeficientes de pérdidas menores (adimensional). Aplicado la ecuación de la energía para un sistema hidráulico compuesto por dos tanques conectados con una tubería de diámetro constante y aceptando la ecuación de Colebrook-White y la ecuación de Darcy-Weisbach se obtiene una expresión subdeterminada debido a que se establecen más incógnitas que ecuaciones. Este problema se soluciona implementando un bucle anidado para el coeficiente de fricción y el diámetro. Este artículo propone una Red Neuronal Artificial (RNA) implementando el método de Retropropagación Levenberg-Marquardt para estimar el diámetro a partir de la función de transferencia log-sigmoidal, esto bajo condiciones estacionarias de flujo. El conjunto de las señales de entrenamiento está conformado por 5,000 datos aleatorios que siguen una distribución normal, calculados en Visual Basic (®Excel). Los estadísticos utilizados para la evaluación de la red corresponden al error medio cuadrático, el análisis de regresión y la función de entropía cruzada. La arquitectura que demostró un mejor redimento correspondió a una capa oculta con 25 neuronas (6-25-1) presentando un MSE igual a 5.41E-6 y 9.98E+00 para el Coeficiente de Correlación de Pearson. La validación cruzada del esquema neuronal se realizó a partir de 1,000 señales de entrada independientes del conjunto de entrenamiento obteniendo MSE igual 6.91E-6. La red neuronal propuesta calcula el diámetro con un error relativo igual a 0.01% con respecto a los valores obtenidos a partir de ®Epanet, evidenciando la capacidad de generalización del sistema optimizado.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11574https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11680Copyright (c) 2022 Cesar-Augusto García-Ubaque, Edgar-Orlando Ladino-Moreno, María-Camila García-Vacahttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf311http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 31 No. 59 (2022): January-March 2022 (Continuous Publication); e14037Revista Facultad de Ingeniería; Vol. 31 Núm. 59 (2022): Enero-Marzo 2022 (Publicación Continua); e140372357-53280121-1129Artificial Neural Networkcold chain.Darcy-WeisbachLevenberg-Marquardtpipeline hydraulicsColebrook-WhiteDarcy-Weisbachhidráulica de tuberíasLevenberg-Marquardtred neuronal artificialDetermination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural NetworksDeterminación del diámetro interior de tuberías a presión para sistemas de agua potable utilizando redes neuronales artificialesinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a394http://purl.org/coar/version/c_970fb48d4fbd8a85García-Ubaque, Cesar-AugustoLadino-Moreno, Edgar-OrlandoGarcía-Vaca, María-Camila001/14335oai:repositorio.uptc.edu.co:001/143352025-07-18 11:53:51.141metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co