Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks
The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applyin...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14335
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037
https://repositorio.uptc.edu.co/handle/001/14335
- Palabra clave:
- Artificial Neural Network
cold chain.
Darcy-Weisbach
Levenberg-Marquardt
pipeline hydraulics
Colebrook-White
Darcy-Weisbach
hidráulica de tuberías
Levenberg-Marquardt
red neuronal artificial
- Rights
- License
- http://creativecommons.org/licenses/by/4.0
id |
REPOUPTC2_34b974b59bfe1e29ad7492e2f6c53da1 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14335 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.en-US.fl_str_mv |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks |
dc.title.es-ES.fl_str_mv |
Determinación del diámetro interior de tuberías a presión para sistemas de agua potable utilizando redes neuronales artificiales |
title |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks |
spellingShingle |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks Artificial Neural Network cold chain. Darcy-Weisbach Levenberg-Marquardt pipeline hydraulics Colebrook-White Darcy-Weisbach hidráulica de tuberías Levenberg-Marquardt red neuronal artificial |
title_short |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks |
title_full |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks |
title_fullStr |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks |
title_full_unstemmed |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks |
title_sort |
Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural Networks |
dc.subject.en-US.fl_str_mv |
Artificial Neural Network cold chain. Darcy-Weisbach Levenberg-Marquardt pipeline hydraulics |
topic |
Artificial Neural Network cold chain. Darcy-Weisbach Levenberg-Marquardt pipeline hydraulics Colebrook-White Darcy-Weisbach hidráulica de tuberías Levenberg-Marquardt red neuronal artificial |
dc.subject.es-ES.fl_str_mv |
Colebrook-White Darcy-Weisbach hidráulica de tuberías Levenberg-Marquardt red neuronal artificial |
description |
The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applying the energy equation for a hydraulic system composed of two tanks connected to a pipe of constant diameter and accepting the Colebrook-White and the Darcy-Weisbach equations, an undetermined expression is obtained since more unknowns than equations are established. This problem is solved by implementing a nested loop for the coefficient of friction and the diameter. This article proposes an Artificial Neural Network (ANN) implementing the Levenberg-Marquardt backpropagation method to estimate the diameter from the log-sigmoidal transfer function under stationary flow conditions. The training signals set consists of 5,000 random data that follow a normal distribution, calculated in Visual Basic (®Excel). The statistics used for the network evaluation correspond to the mean square error, the regression analysis, and the cross-entropy function. The architecture with the best performance had a hidden layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson Correlation Coefficient. The cross-validation of the neural scheme was carried out from 1,000 independent input signals from the training set, obtaining an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with a relative error equal to 0.01% concerning the values obtained with ®Epanet, evidencing the generalizability of the optimized system. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:12:06Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:12:06Z |
dc.date.none.fl_str_mv |
2022-03-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a394 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037 10.19053/01211129.v31.n59.2022.14037 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14335 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037 https://repositorio.uptc.edu.co/handle/001/14335 |
identifier_str_mv |
10.19053/01211129.v31.n59.2022.14037 |
dc.language.none.fl_str_mv |
eng |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11574 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11680 |
dc.rights.en-US.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf311 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 http://purl.org/coar/access_right/c_abf311 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 31 No. 59 (2022): January-March 2022 (Continuous Publication); e14037 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 31 Núm. 59 (2022): Enero-Marzo 2022 (Publicación Continua); e14037 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633871102017536 |
spelling |
2022-03-252024-07-05T19:12:06Z2024-07-05T19:12:06Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1403710.19053/01211129.v31.n59.2022.14037https://repositorio.uptc.edu.co/handle/001/14335The fifth-degree polynomial equation determines the diameter in pressurized drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of minor loss coefficients (dimensionless). After applying the energy equation for a hydraulic system composed of two tanks connected to a pipe of constant diameter and accepting the Colebrook-White and the Darcy-Weisbach equations, an undetermined expression is obtained since more unknowns than equations are established. This problem is solved by implementing a nested loop for the coefficient of friction and the diameter. This article proposes an Artificial Neural Network (ANN) implementing the Levenberg-Marquardt backpropagation method to estimate the diameter from the log-sigmoidal transfer function under stationary flow conditions. The training signals set consists of 5,000 random data that follow a normal distribution, calculated in Visual Basic (®Excel). The statistics used for the network evaluation correspond to the mean square error, the regression analysis, and the cross-entropy function. The architecture with the best performance had a hidden layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson Correlation Coefficient. The cross-validation of the neural scheme was carried out from 1,000 independent input signals from the training set, obtaining an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with a relative error equal to 0.01% concerning the values obtained with ®Epanet, evidencing the generalizability of the optimized system.El diámetro en sistemas a presión de agua potable es posible determinarlo mediante una ecuación polinómica de quinto grado. Como variables de entrada se tiene: Q: caudal (m3/s), H: pérdida de carga (m); L: longitud de la tubería (m); ε: rugosidad (m), : viscosidad cinemática (m2/s) y Ʃk: sumatoria de coeficientes de pérdidas menores (adimensional). Aplicado la ecuación de la energía para un sistema hidráulico compuesto por dos tanques conectados con una tubería de diámetro constante y aceptando la ecuación de Colebrook-White y la ecuación de Darcy-Weisbach se obtiene una expresión subdeterminada debido a que se establecen más incógnitas que ecuaciones. Este problema se soluciona implementando un bucle anidado para el coeficiente de fricción y el diámetro. Este artículo propone una Red Neuronal Artificial (RNA) implementando el método de Retropropagación Levenberg-Marquardt para estimar el diámetro a partir de la función de transferencia log-sigmoidal, esto bajo condiciones estacionarias de flujo. El conjunto de las señales de entrenamiento está conformado por 5,000 datos aleatorios que siguen una distribución normal, calculados en Visual Basic (®Excel). Los estadísticos utilizados para la evaluación de la red corresponden al error medio cuadrático, el análisis de regresión y la función de entropía cruzada. La arquitectura que demostró un mejor redimento correspondió a una capa oculta con 25 neuronas (6-25-1) presentando un MSE igual a 5.41E-6 y 9.98E+00 para el Coeficiente de Correlación de Pearson. La validación cruzada del esquema neuronal se realizó a partir de 1,000 señales de entrada independientes del conjunto de entrenamiento obteniendo MSE igual 6.91E-6. La red neuronal propuesta calcula el diámetro con un error relativo igual a 0.01% con respecto a los valores obtenidos a partir de ®Epanet, evidenciando la capacidad de generalización del sistema optimizado.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11574https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14037/11680Copyright (c) 2022 Cesar-Augusto García-Ubaque, Edgar-Orlando Ladino-Moreno, María-Camila García-Vacahttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf311http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 31 No. 59 (2022): January-March 2022 (Continuous Publication); e14037Revista Facultad de Ingeniería; Vol. 31 Núm. 59 (2022): Enero-Marzo 2022 (Publicación Continua); e140372357-53280121-1129Artificial Neural Networkcold chain.Darcy-WeisbachLevenberg-Marquardtpipeline hydraulicsColebrook-WhiteDarcy-Weisbachhidráulica de tuberíasLevenberg-Marquardtred neuronal artificialDetermination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural NetworksDeterminación del diámetro interior de tuberías a presión para sistemas de agua potable utilizando redes neuronales artificialesinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a394http://purl.org/coar/version/c_970fb48d4fbd8a85García-Ubaque, Cesar-AugustoLadino-Moreno, Edgar-OrlandoGarcía-Vaca, María-Camila001/14335oai:repositorio.uptc.edu.co:001/143352025-07-18 11:53:51.141metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |