Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy

Cu-Be alloys are considered high strength alloys when containing 0.2% to 2% of Be per weight, 0.2% to 2.7% of Co per weight, and up to 2.2% of Ni per weight, since they can present an elastic limit higher than 1380 MPa after aging (precipitation hardening), while, without heat treatment, they presen...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14281
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11616
https://repositorio.uptc.edu.co/handle/001/14281
Palabra clave:
abrasive wear
aging
copper-beryllium alloy
T6
aleación cobre-berilio
desgaste abrasivo
envejecido
T6
Rights
License
http://purl.org/coar/access_right/c_abf13
id REPOUPTC2_23669ac89bb87c52844c01b23f339601
oai_identifier_str oai:repositorio.uptc.edu.co:001/14281
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
dc.title.es-ES.fl_str_mv Efecto del ciclo térmico sobre el comportamiento ante el desgaste abrasivo de la aleación Cu-1.9Be-0.25(Co+Ni)
title Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
spellingShingle Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
abrasive wear
aging
copper-beryllium alloy
T6
aleación cobre-berilio
desgaste abrasivo
envejecido
T6
title_short Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
title_full Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
title_fullStr Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
title_full_unstemmed Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
title_sort Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy
dc.subject.en-US.fl_str_mv abrasive wear
aging
copper-beryllium alloy
T6
topic abrasive wear
aging
copper-beryllium alloy
T6
aleación cobre-berilio
desgaste abrasivo
envejecido
T6
dc.subject.es-ES.fl_str_mv aleación cobre-berilio
desgaste abrasivo
envejecido
T6
description Cu-Be alloys are considered high strength alloys when containing 0.2% to 2% of Be per weight, 0.2% to 2.7% of Co per weight, and up to 2.2% of Ni per weight, since they can present an elastic limit higher than 1380 MPa after aging (precipitation hardening), while, without heat treatment, they present an elastic limit between 205 MPa and 690 MPa [1]. Therefore, the complexity of the microstructure is a determining factor in the mechanical behavior of this type of alloys. In this work we analyzed the effect of microstructural variations obtained by cooling with water and with air from three different solubilization temperatures (750 °C, 800 °C and 850 °C) during 1 h, with and without aging, on the abrasive wear behavior of the Cu-1.9Be-0.25(Co+Ni) alloy. The chemical and microstructural characterization was performed by Dispersive Energy X-Ray Fluorescence (EDXRF) and Scanning Electron Microscopy (SEM-EDS), respectively. Abrasive wear behavior was evaluated under the guidelines of ASTM G65-16. Procedure E was used in this study, and the applied parameters were: force against the specimen (130 N), wheel revolutions (1000 rpm), linear abrasion (718 m) and test time (5 min). All tests were done in duplicate, showing a significant improvement in the abrasive wear behavior of the alloy, compared to the material in supply condition (T6). The lowest wear rates (<0.3 g/min) and volumetric loss (<200 mm3) were obtained with the specimens in solubilized condition with water cooling and without aging. The wear coefficients for the specimens with the highest resistance to abrasive wear are less than Ks=7x10-3.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.none.fl_str_mv 2020-08-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a96
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11616
10.19053/01211129.v29.n54.2020.11616
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14281
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11616
https://repositorio.uptc.edu.co/handle/001/14281
identifier_str_mv 10.19053/01211129.v29.n54.2020.11616
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11616/9562
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11616/10005
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf13
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf13
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11616
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e11616
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633774272315392
spelling 2020-08-252024-07-05T19:11:55Z2024-07-05T19:11:55Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1161610.19053/01211129.v29.n54.2020.11616https://repositorio.uptc.edu.co/handle/001/14281Cu-Be alloys are considered high strength alloys when containing 0.2% to 2% of Be per weight, 0.2% to 2.7% of Co per weight, and up to 2.2% of Ni per weight, since they can present an elastic limit higher than 1380 MPa after aging (precipitation hardening), while, without heat treatment, they present an elastic limit between 205 MPa and 690 MPa [1]. Therefore, the complexity of the microstructure is a determining factor in the mechanical behavior of this type of alloys. In this work we analyzed the effect of microstructural variations obtained by cooling with water and with air from three different solubilization temperatures (750 °C, 800 °C and 850 °C) during 1 h, with and without aging, on the abrasive wear behavior of the Cu-1.9Be-0.25(Co+Ni) alloy. The chemical and microstructural characterization was performed by Dispersive Energy X-Ray Fluorescence (EDXRF) and Scanning Electron Microscopy (SEM-EDS), respectively. Abrasive wear behavior was evaluated under the guidelines of ASTM G65-16. Procedure E was used in this study, and the applied parameters were: force against the specimen (130 N), wheel revolutions (1000 rpm), linear abrasion (718 m) and test time (5 min). All tests were done in duplicate, showing a significant improvement in the abrasive wear behavior of the alloy, compared to the material in supply condition (T6). The lowest wear rates (<0.3 g/min) and volumetric loss (<200 mm3) were obtained with the specimens in solubilized condition with water cooling and without aging. The wear coefficients for the specimens with the highest resistance to abrasive wear are less than Ks=7x10-3.Las aleaciones Cu-Be son consideradas aleaciones de alta resistencia cuando contienen entre 0,2% y 2% en peso de Be, de 0,2% a 2,7% en peso de Co y hasta 2,2% en peso de Ni, ya que pueden presentar un límite elástico superior a 1380 MPa después de envejecido (endurecimiento por precipitación), mientras que, sin tratamiento térmico, presentan un límite elástico entre 205 MPa y 690 MPa [1]. Por lo que la complejidad de la microestructura es un factor determinante en el comportamiento mecánico de este tipo de aleaciones. En este trabajo se analizó el efecto de las variaciones microestructurales obtenidas por enfriamiento en agua y al aire desde tres diferentes temperaturas de solubilización (750 °C, 800 °C y 850 °C) durante 1 h, con y sin envejecido, sobre el comportamiento ante el desgaste abrasivo de la aleación Cu-1.9Be-0.25(Co+Ni). La caracterización química y microestructural se realizó mediante Fluorescencia de Rayos X por Energía Dispersiva (EDXRF) y Microscopía Electrónica de Barrido (SEM-EDS), respectivamente. El comportamiento ante el desgaste abrasivo se evaluó bajo los lineamientos de la norma ASTM G65-16. El procedimiento E fue usado en este estudio. Todas las pruebas se hicieron por duplicado, mostrando una mejora significativa en el comportamiento ante el desgaste abrasivo de la aleación, en comparación con el material en condición de suministro (T6). Las menores velocidades de desgaste (<0.3 g/min) y pérdida volumétrica (<200 mm3) se obtuvieron para las probetas en condición solubilizada con enfriamiento en agua y sin envejecido. Los coeficientes de desgaste para las probetas con la mayor resistencia al desgaste abrasivo son inferiores a Ks=7x10-3.application/pdfapplication/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/11616/9562https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11616/10005Copyright (c) 2020 Oscar Fabián Higuera-Cobos, Ph. D., Carlos Mauricio Moreno-Téllez, Ph. D., Cristian Antonio Pedraza-Yepes, M.Sc.http://purl.org/coar/access_right/c_abf13http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11616Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e116162357-53280121-1129abrasive wearagingcopper-beryllium alloyT6aleación cobre-beriliodesgaste abrasivoenvejecidoT6Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) AlloyEfecto del ciclo térmico sobre el comportamiento ante el desgaste abrasivo de la aleación Cu-1.9Be-0.25(Co+Ni)info:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a96http://purl.org/coar/version/c_970fb48d4fbd8a85Higuera-Cobos, Oscar FabiánMoreno-Téllez, Carlos MauricioPedraza-Yepes, Cristian Antonio001/14281oai:repositorio.uptc.edu.co:001/142812025-07-18 11:53:14.298metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co