Detection of lies by facial thermal imagery analysis

An artificial vision system is presented for lie detection by analyzing face thermal image sequences. This system represents an alternative technique to the polygraph. Some of its features are: 1) it has no physical contact with the examinee, 2) it is non-intrusive, 3) it has a potential for private...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14163
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771
https://repositorio.uptc.edu.co/handle/001/14163
Palabra clave:
face anthropometric measurements
KLT algorithm
lie detection
periorbital area
thermography
Rights
License
http://purl.org/coar/access_right/c_abf82
id REPOUPTC2_20dcfd1b077da35885b34c1c31f47f85
oai_identifier_str oai:repositorio.uptc.edu.co:001/14163
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2017-01-252024-07-05T19:11:30Z2024-07-05T19:11:30Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/577110.19053/01211129.v26.n44.2017.5771https://repositorio.uptc.edu.co/handle/001/14163An artificial vision system is presented for lie detection by analyzing face thermal image sequences. This system represents an alternative technique to the polygraph. Some of its features are: 1) it has no physical contact with the examinee, 2) it is non-intrusive, 3) it has a potential for private use, and 4) it can simultaneously analyze several persons. The proposed system is based on the detection of physiological changes in temperature in the lacrimal puncta area caused by the subtle increase in blood flow through the nearby vascular network. These changes take place when anxiety appears as a consequence of deception. Thus, the system segments the periorbital area, and tracks consecutive frames using the Kanade-Lucas-Tomasi algorithm. The results show a success rate of 79.2 % in detecting lies using a simple classification based on the comparison between the estimated temperatures in control questions, and the rest of the interrogation procedure. The performance of this system is comparable with previous works, where cameras with better specifications were used.application/pdfapplication/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/4714https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/6392Revista Facultad de Ingeniería; Vol. 26 No. 44 (2017); 47-59Revista Facultad de Ingeniería; Vol. 26 Núm. 44 (2017); 47-592357-53280121-1129face anthropometric measurementsKLT algorithmlie detectionperiorbital areathermographyDetection of lies by facial thermal imagery analysisinvestigationinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a165http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf82http://purl.org/coar/access_right/c_abf2Bedoya-Echeverry, SebastiánBelalcázar-Ramírez, HernánLoaiza-Correa, HumbertoNope-Rodríguez, Sandra EsperanzaPinedo-Jaramillo, Carlos RafaelRestrepo-Girón, Andrés David001/14163oai:repositorio.uptc.edu.co:001/141632025-07-18 11:53:14.473metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Detection of lies by facial thermal imagery analysis
title Detection of lies by facial thermal imagery analysis
spellingShingle Detection of lies by facial thermal imagery analysis
face anthropometric measurements
KLT algorithm
lie detection
periorbital area
thermography
title_short Detection of lies by facial thermal imagery analysis
title_full Detection of lies by facial thermal imagery analysis
title_fullStr Detection of lies by facial thermal imagery analysis
title_full_unstemmed Detection of lies by facial thermal imagery analysis
title_sort Detection of lies by facial thermal imagery analysis
dc.subject.en-US.fl_str_mv face anthropometric measurements
KLT algorithm
lie detection
periorbital area
thermography
topic face anthropometric measurements
KLT algorithm
lie detection
periorbital area
thermography
description An artificial vision system is presented for lie detection by analyzing face thermal image sequences. This system represents an alternative technique to the polygraph. Some of its features are: 1) it has no physical contact with the examinee, 2) it is non-intrusive, 3) it has a potential for private use, and 4) it can simultaneously analyze several persons. The proposed system is based on the detection of physiological changes in temperature in the lacrimal puncta area caused by the subtle increase in blood flow through the nearby vascular network. These changes take place when anxiety appears as a consequence of deception. Thus, the system segments the periorbital area, and tracks consecutive frames using the Kanade-Lucas-Tomasi algorithm. The results show a success rate of 79.2 % in detecting lies using a simple classification based on the comparison between the estimated temperatures in control questions, and the rest of the interrogation procedure. The performance of this system is comparable with previous works, where cameras with better specifications were used.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.none.fl_str_mv 2017-01-25
dc.type.en-US.fl_str_mv investigation
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a165
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771
10.19053/01211129.v26.n44.2017.5771
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14163
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771
https://repositorio.uptc.edu.co/handle/001/14163
identifier_str_mv 10.19053/01211129.v26.n44.2017.5771
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/4714
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/6392
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf82
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf82
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 26 No. 44 (2017); 47-59
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 26 Núm. 44 (2017); 47-59
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633800575844352