Detection of lies by facial thermal imagery analysis
An artificial vision system is presented for lie detection by analyzing face thermal image sequences. This system represents an alternative technique to the polygraph. Some of its features are: 1) it has no physical contact with the examinee, 2) it is non-intrusive, 3) it has a potential for private...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14163
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771
https://repositorio.uptc.edu.co/handle/001/14163
- Palabra clave:
- face anthropometric measurements
KLT algorithm
lie detection
periorbital area
thermography
- Rights
- License
- http://purl.org/coar/access_right/c_abf82
id |
REPOUPTC2_20dcfd1b077da35885b34c1c31f47f85 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14163 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2017-01-252024-07-05T19:11:30Z2024-07-05T19:11:30Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/577110.19053/01211129.v26.n44.2017.5771https://repositorio.uptc.edu.co/handle/001/14163An artificial vision system is presented for lie detection by analyzing face thermal image sequences. This system represents an alternative technique to the polygraph. Some of its features are: 1) it has no physical contact with the examinee, 2) it is non-intrusive, 3) it has a potential for private use, and 4) it can simultaneously analyze several persons. The proposed system is based on the detection of physiological changes in temperature in the lacrimal puncta area caused by the subtle increase in blood flow through the nearby vascular network. These changes take place when anxiety appears as a consequence of deception. Thus, the system segments the periorbital area, and tracks consecutive frames using the Kanade-Lucas-Tomasi algorithm. The results show a success rate of 79.2 % in detecting lies using a simple classification based on the comparison between the estimated temperatures in control questions, and the rest of the interrogation procedure. The performance of this system is comparable with previous works, where cameras with better specifications were used.application/pdfapplication/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/4714https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/6392Revista Facultad de Ingeniería; Vol. 26 No. 44 (2017); 47-59Revista Facultad de Ingeniería; Vol. 26 Núm. 44 (2017); 47-592357-53280121-1129face anthropometric measurementsKLT algorithmlie detectionperiorbital areathermographyDetection of lies by facial thermal imagery analysisinvestigationinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a165http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf82http://purl.org/coar/access_right/c_abf2Bedoya-Echeverry, SebastiánBelalcázar-Ramírez, HernánLoaiza-Correa, HumbertoNope-Rodríguez, Sandra EsperanzaPinedo-Jaramillo, Carlos RafaelRestrepo-Girón, Andrés David001/14163oai:repositorio.uptc.edu.co:001/141632025-07-18 11:53:14.473metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Detection of lies by facial thermal imagery analysis |
title |
Detection of lies by facial thermal imagery analysis |
spellingShingle |
Detection of lies by facial thermal imagery analysis face anthropometric measurements KLT algorithm lie detection periorbital area thermography |
title_short |
Detection of lies by facial thermal imagery analysis |
title_full |
Detection of lies by facial thermal imagery analysis |
title_fullStr |
Detection of lies by facial thermal imagery analysis |
title_full_unstemmed |
Detection of lies by facial thermal imagery analysis |
title_sort |
Detection of lies by facial thermal imagery analysis |
dc.subject.en-US.fl_str_mv |
face anthropometric measurements KLT algorithm lie detection periorbital area thermography |
topic |
face anthropometric measurements KLT algorithm lie detection periorbital area thermography |
description |
An artificial vision system is presented for lie detection by analyzing face thermal image sequences. This system represents an alternative technique to the polygraph. Some of its features are: 1) it has no physical contact with the examinee, 2) it is non-intrusive, 3) it has a potential for private use, and 4) it can simultaneously analyze several persons. The proposed system is based on the detection of physiological changes in temperature in the lacrimal puncta area caused by the subtle increase in blood flow through the nearby vascular network. These changes take place when anxiety appears as a consequence of deception. Thus, the system segments the periorbital area, and tracks consecutive frames using the Kanade-Lucas-Tomasi algorithm. The results show a success rate of 79.2 % in detecting lies using a simple classification based on the comparison between the estimated temperatures in control questions, and the rest of the interrogation procedure. The performance of this system is comparable with previous works, where cameras with better specifications were used. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:11:30Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:11:30Z |
dc.date.none.fl_str_mv |
2017-01-25 |
dc.type.en-US.fl_str_mv |
investigation |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a165 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771 10.19053/01211129.v26.n44.2017.5771 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14163 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771 https://repositorio.uptc.edu.co/handle/001/14163 |
identifier_str_mv |
10.19053/01211129.v26.n44.2017.5771 |
dc.language.none.fl_str_mv |
eng |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/4714 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5771/6392 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf82 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf82 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf application/xml |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 26 No. 44 (2017); 47-59 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 26 Núm. 44 (2017); 47-59 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633800575844352 |