Morphological and physicochemical characterization of biochar produced by gasification of selected forestry species

In this study, biochar samples acquired as by-product by downdraft gasification at 700 °C from Eucalyptus grandis (BC-EG), Acacia magnium (BC-AM) and Gmelina arborea (BC-GA) were characterized. The morphological characteristics and physicochemical properties of biochar were studied using nitrogen ph...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14199
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/7324
https://repositorio.uptc.edu.co/handle/001/14199
Palabra clave:
Acacia
Biomass charcoal
Eucalyptus
Forestry products
Forestry species
Gmelina
Physicochemical property
Acacia
Biocarbón
Especies forestales
Eucalyptus
Gmelina
Productos forestales
Propiedades fisicoquímicas
Rights
License
http://purl.org/coar/access_right/c_abf133
Description
Summary:In this study, biochar samples acquired as by-product by downdraft gasification at 700 °C from Eucalyptus grandis (BC-EG), Acacia magnium (BC-AM) and Gmelina arborea (BC-GA) were characterized. The morphological characteristics and physicochemical properties of biochar were studied using nitrogen physisorption by the Brunauer-Emmet-Teller (BET) method, Scanning Electron Microscopy (SEM), X-ray Energy Dispersive Spectrometry (EDX) and Fourier Transform Infrared Spectroscopy (FTIR). The surface area (SA) of the materials was in the 2.0-50.0 m2/g range, with the biochar obtained from BC-EG showing the highest SA (50.0 m2/g), while the biochar derived from BC-GA showed the lowest SA (2.0 m2/g). In addition, all samples can be classified as mesoporous materials because their pore sizes were between 2 and 50 nm. This indicates that these materials can be used in absorption processes; however, the biochar obtained from BC-AM is expected to be the most suitable for absorption applications. FTIR biochar spectra did not exhibit characteristic peaks for cellulose or hemicellulose in any sample due to decomposition of these compounds at the gasification temperature. Moreover, according to SEM/EDX analyzes, all the samples presented well-defined pore structure and contained minerals as Na, K and Ca, suggesting that the biochar could also be useful for soil amendment applications.