Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/14265
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514
https://repositorio.uptc.edu.co/handle/001/14265
- Palabra clave:
- rums
aging
volume losses
modeling
artificial neural networks
MATLAB
rones
añejamiento
mermas
modelación
redes neuronales artificiales
- Rights
- License
- http://purl.org/coar/access_right/c_abf181
id |
REPOUPTC2_1a1bd330ec872ef9cbf1d5ea5aca7659 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/14265 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
dc.title.en-US.fl_str_mv |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums |
dc.title.es-ES.fl_str_mv |
Modelo neuronal para la predicción de mermas en el proceso de añejamiento de rones |
title |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums |
spellingShingle |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums rums aging volume losses modeling artificial neural networks MATLAB rones añejamiento mermas modelación redes neuronales artificiales |
title_short |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums |
title_full |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums |
title_fullStr |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums |
title_full_unstemmed |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums |
title_sort |
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums |
dc.subject.en-US.fl_str_mv |
rums aging volume losses modeling artificial neural networks MATLAB |
topic |
rums aging volume losses modeling artificial neural networks MATLAB rones añejamiento mermas modelación redes neuronales artificiales |
dc.subject.es-ES.fl_str_mv |
rones añejamiento mermas modelación redes neuronales artificiales |
description |
The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB 2017 software was used to estimate volume losses. In the modeling of the rum aging process, the multilayer perceptron neuronal network with one and two hidden layers was used, varying the number of neurons in these between 4 and 10. The Levenberg-Marquadt (LM) and Bayesian training algorithms were compared (Bay) The increase in 6 consecutive iterations of the validation error and 1,000 as the maximum number of training cycles were the criteria used to stop the training. The input variables to the network were: numerical month, volume, temperature, humidity, initial alcoholic degree and aging time, while the output variable was wastage. 546 pairs of input/output data were processed. The statistical Friedman and Wilcoxon tests were performed to select the best neural architecture according to the mean square error (MSE) criteria. The selected topology has a 6-4-4-1 structure, with an MSE of 2.1∙10-3 and a correlation factor (R) with experimental data of 0.9898. The neural network obtained was used to simulate thirteen initial aging conditions that were not used for training and validation, detecting a coefficient of determination (R2) of 0.9961. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T19:11:53Z |
dc.date.available.none.fl_str_mv |
2024-07-05T19:11:53Z |
dc.date.none.fl_str_mv |
2020-02-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a264 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514 10.19053/01211129.v29.n54.2020.10514 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/14265 |
url |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514 https://repositorio.uptc.edu.co/handle/001/14265 |
identifier_str_mv |
10.19053/01211129.v29.n54.2020.10514 |
dc.language.none.fl_str_mv |
eng spa |
dc.language.iso.spa.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8833 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8834 https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/9173 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf181 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf181 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/xml |
dc.coverage.en-US.fl_str_mv |
N.A. |
dc.coverage.es-ES.fl_str_mv |
N.A. |
dc.publisher.en-US.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e10514 |
dc.source.es-ES.fl_str_mv |
Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e10514 |
dc.source.none.fl_str_mv |
2357-5328 0121-1129 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633830918488064 |
spelling |
2020-02-222024-07-05T19:11:53Z2024-07-05T19:11:53Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1051410.19053/01211129.v29.n54.2020.10514https://repositorio.uptc.edu.co/handle/001/14265The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB 2017 software was used to estimate volume losses. In the modeling of the rum aging process, the multilayer perceptron neuronal network with one and two hidden layers was used, varying the number of neurons in these between 4 and 10. The Levenberg-Marquadt (LM) and Bayesian training algorithms were compared (Bay) The increase in 6 consecutive iterations of the validation error and 1,000 as the maximum number of training cycles were the criteria used to stop the training. The input variables to the network were: numerical month, volume, temperature, humidity, initial alcoholic degree and aging time, while the output variable was wastage. 546 pairs of input/output data were processed. The statistical Friedman and Wilcoxon tests were performed to select the best neural architecture according to the mean square error (MSE) criteria. The selected topology has a 6-4-4-1 structure, with an MSE of 2.1∙10-3 and a correlation factor (R) with experimental data of 0.9898. The neural network obtained was used to simulate thirteen initial aging conditions that were not used for training and validation, detecting a coefficient of determination (R2) of 0.9961.El proceso de añejamiento de ron experimenta pérdidas de volumen, denominadas mermas. Las variables numéricas de operación: producto, rambla, posiciones horizontal y vertical, fecha, volumen, grado alcohólico, temperatura, humedad y tiempo de añejamiento, registradas en bases de datos, contienen información valiosa para estudiar el proceso. Se utilizó el software MATLAB 2017 para estimar las pérdidas en volumen. En la modelación del proceso de añejamiento de ron se utilizó la red neuronal perceptrón multicapa con una y dos capas ocultas, variándose el número de neuronas en estas entre 4 y 10. Se compararon los algoritmos de entrenamiento Levenberg-Marquadt (L-M) y Bayesiano (Bay). El incremento en 6 iteraciones consecutivas del error de validación y 1 000 como número máximo de ciclo de entrenamiento fueron los criterios utilizados para detener el entrenamiento. Las variables de entrada a la red fueron: mes numérico, volumen, temperatura, humedad, grado alcohólico inicial y tiempo de añejamiento, mientras que la variable de salida fue mermas. Se procesaron 546 pares de datos de entrada/salida. Se realizaron las pruebas estadísticas de Friedman y Wilcoxon para la selección de la arquitectura neuronal de mejor comportamiento de acuerdo al criterio del error cuadrático medio (MSE). La topología seleccionada presenta la estructura 6-4-4-1, con un MSE de 2.1∙10-3 y un factor de correlación (R) con los datos experimentales de 0.9981. La red neuronal obtenida se empleó para la simulación de trece condiciones iniciales de añejamiento que no fueron empleadas para el entrenamiento y la validación, detectándose un coeficiente de determinación (R2) de 0.9961.application/pdfapplication/pdfapplication/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8833https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8834https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/9173Copyright (c) 2020 Beatriz García-Castellanos, Osney Pérez-Ones, Ph. D., Lourdes Zumalacárregui-de-Cárdenas, Ph. D., Idania Blanco-Carvajal, M.Sc., Luis Eduardo López-de-la-Mazahttp://purl.org/coar/access_right/c_abf181http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e10514Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e105142357-53280121-1129rumsagingvolume lossesmodelingartificial neural networksMATLABronesañejamientomermasmodelaciónredes neuronales artificialesNeural Model for the Prediction of Volume Losses in the Aging Process of RumsModelo neuronal para la predicción de mermas en el proceso de añejamiento de ronesinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a264http://purl.org/coar/version/c_970fb48d4fbd8a85N.A.N.A.García-Castellanos, BeatrizPérez-Ones, OsneyZumalacárregui-de-Cárdenas, LourdesBlanco-Carvajal, IdaniaLópez-de-la-Maza, Luis Eduardo001/14265oai:repositorio.uptc.edu.co:001/142652025-07-18 11:53:37.621metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |