Neural Model for the Prediction of Volume Losses in the Aging Process of Rums

The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14265
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514
https://repositorio.uptc.edu.co/handle/001/14265
Palabra clave:
rums
aging
volume losses
modeling
artificial neural networks
MATLAB
rones
añejamiento
mermas
modelación
redes neuronales artificiales
Rights
License
http://purl.org/coar/access_right/c_abf181
id REPOUPTC2_1a1bd330ec872ef9cbf1d5ea5aca7659
oai_identifier_str oai:repositorio.uptc.edu.co:001/14265
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
dc.title.es-ES.fl_str_mv Modelo neuronal para la predicción de mermas en el proceso de añejamiento de rones
title Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
spellingShingle Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
rums
aging
volume losses
modeling
artificial neural networks
MATLAB
rones
añejamiento
mermas
modelación
redes neuronales artificiales
title_short Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
title_full Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
title_fullStr Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
title_full_unstemmed Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
title_sort Neural Model for the Prediction of Volume Losses in the Aging Process of Rums
dc.subject.en-US.fl_str_mv rums
aging
volume losses
modeling
artificial neural networks
MATLAB
topic rums
aging
volume losses
modeling
artificial neural networks
MATLAB
rones
añejamiento
mermas
modelación
redes neuronales artificiales
dc.subject.es-ES.fl_str_mv rones
añejamiento
mermas
modelación
redes neuronales artificiales
description The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB 2017 software was used to estimate volume losses. In the modeling of the rum aging process, the multilayer perceptron neuronal network with one and two hidden layers was used, varying the number of neurons in these between 4 and 10. The Levenberg-Marquadt (LM) and Bayesian training algorithms were compared (Bay) The increase in 6 consecutive iterations of the validation error and 1,000 as the maximum number of training cycles were the criteria used to stop the training. The input variables to the network were: numerical month, volume, temperature, humidity, initial alcoholic degree and aging time, while the output variable was wastage. 546 pairs of input/output data were processed. The statistical Friedman and Wilcoxon tests were performed to select the best neural architecture according to the mean square error (MSE) criteria. The selected topology has a 6-4-4-1 structure, with an MSE of 2.1∙10-3 and a correlation factor (R) with experimental data of 0.9898. The neural network obtained was used to simulate thirteen initial aging conditions that were not used for training and validation, detecting a coefficient of determination (R2) of 0.9961.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:53Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:53Z
dc.date.none.fl_str_mv 2020-02-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a264
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514
10.19053/01211129.v29.n54.2020.10514
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14265
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514
https://repositorio.uptc.edu.co/handle/001/14265
identifier_str_mv 10.19053/01211129.v29.n54.2020.10514
dc.language.none.fl_str_mv eng
spa
dc.language.iso.spa.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8833
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8834
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/9173
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf181
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf181
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/xml
dc.coverage.en-US.fl_str_mv N.A.
dc.coverage.es-ES.fl_str_mv N.A.
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e10514
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e10514
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633830918488064
spelling 2020-02-222024-07-05T19:11:53Z2024-07-05T19:11:53Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1051410.19053/01211129.v29.n54.2020.10514https://repositorio.uptc.edu.co/handle/001/14265The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB 2017 software was used to estimate volume losses. In the modeling of the rum aging process, the multilayer perceptron neuronal network with one and two hidden layers was used, varying the number of neurons in these between 4 and 10. The Levenberg-Marquadt (LM) and Bayesian training algorithms were compared (Bay) The increase in 6 consecutive iterations of the validation error and 1,000 as the maximum number of training cycles were the criteria used to stop the training. The input variables to the network were: numerical month, volume, temperature, humidity, initial alcoholic degree and aging time, while the output variable was wastage. 546 pairs of input/output data were processed. The statistical Friedman and Wilcoxon tests were performed to select the best neural architecture according to the mean square error (MSE) criteria. The selected topology has a 6-4-4-1 structure, with an MSE of 2.1∙10-3 and a correlation factor (R) with experimental data of 0.9898. The neural network obtained was used to simulate thirteen initial aging conditions that were not used for training and validation, detecting a coefficient of determination (R2) of 0.9961.El proceso de añejamiento de ron experimenta pérdidas de volumen, denominadas mermas. Las variables numéricas de operación: producto, rambla, posiciones horizontal y vertical, fecha, volumen, grado alcohólico, temperatura, humedad y tiempo de añejamiento, registradas en bases de datos, contienen información valiosa para estudiar el proceso. Se utilizó el software MATLAB 2017 para estimar las pérdidas en volumen. En la modelación del proceso de añejamiento de ron se utilizó la red neuronal perceptrón multicapa con una y dos capas ocultas, variándose el número de neuronas en estas entre 4 y 10. Se compararon los algoritmos de entrenamiento Levenberg-Marquadt (L-M) y Bayesiano (Bay). El incremento en 6 iteraciones consecutivas del error de validación y 1 000 como número máximo de ciclo de entrenamiento fueron los criterios utilizados para detener el entrenamiento.  Las variables de entrada a la red fueron: mes numérico, volumen, temperatura, humedad, grado alcohólico inicial y tiempo de añejamiento, mientras que la variable de salida fue mermas. Se procesaron 546 pares de datos de entrada/salida. Se realizaron las pruebas estadísticas de Friedman y Wilcoxon para la selección de la arquitectura neuronal de mejor comportamiento de acuerdo al criterio del error cuadrático medio (MSE). La topología seleccionada presenta la estructura 6-4-4-1, con un MSE de 2.1∙10-3 y un factor de correlación (R) con los datos experimentales de 0.9981. La red neuronal obtenida se empleó para la simulación de trece condiciones iniciales de añejamiento que no fueron empleadas para el entrenamiento y la validación, detectándose un coeficiente de determinación (R2) de 0.9961.application/pdfapplication/pdfapplication/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8833https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/8834https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10514/9173Copyright (c) 2020 Beatriz García-Castellanos, Osney Pérez-Ones, Ph. D., Lourdes Zumalacárregui-de-Cárdenas, Ph. D., Idania Blanco-Carvajal, M.Sc., Luis Eduardo López-de-la-Mazahttp://purl.org/coar/access_right/c_abf181http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e10514Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e105142357-53280121-1129rumsagingvolume lossesmodelingartificial neural networksMATLABronesañejamientomermasmodelaciónredes neuronales artificialesNeural Model for the Prediction of Volume Losses in the Aging Process of RumsModelo neuronal para la predicción de mermas en el proceso de añejamiento de ronesinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a264http://purl.org/coar/version/c_970fb48d4fbd8a85N.A.N.A.García-Castellanos, BeatrizPérez-Ones, OsneyZumalacárregui-de-Cárdenas, LourdesBlanco-Carvajal, IdaniaLópez-de-la-Maza, Luis Eduardo001/14265oai:repositorio.uptc.edu.co:001/142652025-07-18 11:53:37.621metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co