Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations

Mathematical analysis and simulation of a discontinuous rectification column was performed using an operational strategy during the start-up before reaching a pseudo-stable state in discontinuous operation. The mathematical model was formulated focusing on the equilibrium state (ES) and implementing...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14334
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14023
https://repositorio.uptc.edu.co/handle/001/14334
Palabra clave:
PSRK method
Thomas algorithm
UNIFAC model
UNIQUAC model
Wang-Henke algorithm
algoritmo de Thomas
algoritmo de Wang-Henke
método PSRK
modelo UNIFAC
modelo UNIQUAC
Rights
License
http://creativecommons.org/licenses/by/4.0
id REPOUPTC2_1773f952a126c9548daac085c0782c72
oai_identifier_str oai:repositorio.uptc.edu.co:001/14334
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
dc.title.es-ES.fl_str_mv Análisis matemático de una columna de rectificación discontinua a escala piloto bajo el concepto de estados estables continuos y las ecuaciones MESH
title Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
spellingShingle Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
PSRK method
Thomas algorithm
UNIFAC model
UNIQUAC model
Wang-Henke algorithm
algoritmo de Thomas
algoritmo de Wang-Henke
método PSRK
modelo UNIFAC
modelo UNIQUAC
title_short Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
title_full Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
title_fullStr Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
title_full_unstemmed Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
title_sort Mathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH Equations
dc.subject.en-US.fl_str_mv PSRK method
Thomas algorithm
UNIFAC model
UNIQUAC model
Wang-Henke algorithm
topic PSRK method
Thomas algorithm
UNIFAC model
UNIQUAC model
Wang-Henke algorithm
algoritmo de Thomas
algoritmo de Wang-Henke
método PSRK
modelo UNIFAC
modelo UNIQUAC
dc.subject.es-ES.fl_str_mv algoritmo de Thomas
algoritmo de Wang-Henke
método PSRK
modelo UNIFAC
modelo UNIQUAC
description Mathematical analysis and simulation of a discontinuous rectification column was performed using an operational strategy during the start-up before reaching a pseudo-stable state in discontinuous operation. The mathematical model was formulated focusing on the equilibrium state (ES) and implementing MESH equations (M: Mass balance, E: Equilibrium thermodynamics, S: Stoichiometry relations, H: Enthalpy or heat balance) to provide solutions using the Thomas method and the Wang-Henke algorithms internally coupled to the Fourth Order Runge-Kutta method. The results were validated with experimental data from a distillation column at a pilot scale using an ethanol-water system with an equilibrium behavior described by the UNIQUAC Functional-group Activity Coefficients (UNIFAC) and Predictive Soave-Redlich-Kwong (PSRK) thermodynamic models with a global error of 1.84%. The molar ethanol concentrations presented deviations from the mathematical model predictions from 1.51% to 0.02%, with a global mean error of 0.48%. A mean error of 0.055% was obtained for the temperature profile of the column, thus demonstrating the effectiveness of the solution and its convergence capacity. The solution based on the Thomas method and the Wang-Henke algorithms coupled to the Runge-Kutta method made it possible to describe the behavior and variables of all stages of the distillation column. Operation at total reflux from start-up avoids wasting product and allows for the stabilization of the state variables, such as temperature and molar composition.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:12:06Z
dc.date.available.none.fl_str_mv 2024-07-05T19:12:06Z
dc.date.none.fl_str_mv 2022-03-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a476
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14023
10.19053/01211129.v31.n59.2022.14023
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14334
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14023
https://repositorio.uptc.edu.co/handle/001/14334
identifier_str_mv 10.19053/01211129.v31.n59.2022.14023
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14023/11605
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14023/11682
dc.rights.en-US.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf393
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf393
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 No. 59 (2022): January-March 2022 (Continuous Publication); e14023
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 Núm. 59 (2022): Enero-Marzo 2022 (Publicación Continua); e14023
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633890245869568
spelling 2022-03-312024-07-05T19:12:06Z2024-07-05T19:12:06Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1402310.19053/01211129.v31.n59.2022.14023https://repositorio.uptc.edu.co/handle/001/14334Mathematical analysis and simulation of a discontinuous rectification column was performed using an operational strategy during the start-up before reaching a pseudo-stable state in discontinuous operation. The mathematical model was formulated focusing on the equilibrium state (ES) and implementing MESH equations (M: Mass balance, E: Equilibrium thermodynamics, S: Stoichiometry relations, H: Enthalpy or heat balance) to provide solutions using the Thomas method and the Wang-Henke algorithms internally coupled to the Fourth Order Runge-Kutta method. The results were validated with experimental data from a distillation column at a pilot scale using an ethanol-water system with an equilibrium behavior described by the UNIQUAC Functional-group Activity Coefficients (UNIFAC) and Predictive Soave-Redlich-Kwong (PSRK) thermodynamic models with a global error of 1.84%. The molar ethanol concentrations presented deviations from the mathematical model predictions from 1.51% to 0.02%, with a global mean error of 0.48%. A mean error of 0.055% was obtained for the temperature profile of the column, thus demonstrating the effectiveness of the solution and its convergence capacity. The solution based on the Thomas method and the Wang-Henke algorithms coupled to the Runge-Kutta method made it possible to describe the behavior and variables of all stages of the distillation column. Operation at total reflux from start-up avoids wasting product and allows for the stabilization of the state variables, such as temperature and molar composition.Se realizó el análisis matemático y la simulación de una columna de rectificación discontinua utilizando una estrategia operativa durante la puesta en marcha antes de alcanzar un estado pseudoestable en operación discontinua. El modelo matemático se formuló enfocándose en el estado de equilibrio (ES) e implementando ecuaciones MESH (M: balance de masa, E: termodinámica del equilibrio, S: relaciones estequiométricas, H: entalpía o balance de calor) para brindar soluciones utilizando el método de Thomas y el método de Wang. -Algoritmos de Henke acoplados internamente al método Runge-Kutta de Cuarto Orden. Los resultados fueron validados con datos experimentales de una columna de destilación a escala piloto utilizando un sistema etanol-agua con un comportamiento de equilibrio descrito por los modelos termodinámicos UNIQUAC Functional-group Activity Coficients (UNIFAC) y Predictive Soave-Redlich-Kwong (PSRK) con un error global del 1,84%. Las concentraciones molares de etanol presentaron desviaciones de las predicciones del modelo matemático de 1,51% a 0,02%, con un error medio global de 0,48%. Se obtuvo un error medio de 0.055% para el perfil de temperatura de la columna, demostrando así la efectividad de la solución y su capacidad de convergencia. La solución basada en el método de Thomas y los algoritmos de Wang-Henke acoplados al método de Runge-Kutta permitió describir el comportamiento y las variables de todas las etapas de la columna de destilación. El funcionamiento a reflujo total desde el arranque evita desperdicios de producto y permite estabilizar las variables de estado, como temperatura y composición molar.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/14023/11605https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14023/11682Copyright (c) 2022 Jennyfer Diaz-Angulo, Alfonso Barbosa-Meza, Fiderman Machuca-Martínez, Miguel-Ángel Mueseshttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf393http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 31 No. 59 (2022): January-March 2022 (Continuous Publication); e14023Revista Facultad de Ingeniería; Vol. 31 Núm. 59 (2022): Enero-Marzo 2022 (Publicación Continua); e140232357-53280121-1129PSRK methodThomas algorithmUNIFAC modelUNIQUAC modelWang-Henke algorithmalgoritmo de Thomasalgoritmo de Wang-Henkemétodo PSRKmodelo UNIFACmodelo UNIQUACMathematical Analysis of Discontinuous Rectification Columns at Pilot Scale Based on the Continuous Stable States Concept and MESH EquationsAnálisis matemático de una columna de rectificación discontinua a escala piloto bajo el concepto de estados estables continuos y las ecuaciones MESHinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a476http://purl.org/coar/version/c_970fb48d4fbd8a85Diaz-Angulo, JennyferBarbosa-Meza, AlfonsoMachuca-Martínez, FidermanMueses, Miguel-Ángel001/14334oai:repositorio.uptc.edu.co:001/143342025-07-18 11:53:51.451metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co