Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013

1 recurso en línea (páginas 85-104).

Autores:
Montoya González, Angie Andrea
Ortiz Beltrán, Fabián Gabriel
Santa Guzmán, Luis Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/2203
Acceso en línea:
http://repositorio.uptc.edu.co/handle/001/2203
Palabra clave:
Métodos estadísticos
Teoría bayesiana de decisiones estadísticas
Virus del dengue
Dengue - Modelos matemáticos
Enfermedades transmitidas por vectores - Estudio de casos
Atlántico
Colombia
Dengue
Epidemiología
Estadística espacial
Modelo bayesiano
Rights
openAccess
License
Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia
id REPOUPTC2_16060d96d0f13359efe5039ce3dcf5c9
oai_identifier_str oai:repositorio.uptc.edu.co:001/2203
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.spa.fl_str_mv Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
dc.title.alternative.eng.fl_str_mv Bayesian model for the study of dengue disease in the department of Atlántico Colombia years 2010 to 2013
Modelo bayesiano para o estudo da doença do dengue no departamento de Atlántico, Colômbia, anos 2010 a 2013
title Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
spellingShingle Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
Métodos estadísticos
Teoría bayesiana de decisiones estadísticas
Virus del dengue
Dengue - Modelos matemáticos
Enfermedades transmitidas por vectores - Estudio de casos
Atlántico
Colombia
Dengue
Epidemiología
Estadística espacial
Modelo bayesiano
title_short Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
title_full Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
title_fullStr Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
title_full_unstemmed Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
title_sort Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
dc.creator.fl_str_mv Montoya González, Angie Andrea
Ortiz Beltrán, Fabián Gabriel
Santa Guzmán, Luis Fernando
dc.contributor.author.none.fl_str_mv Montoya González, Angie Andrea
Ortiz Beltrán, Fabián Gabriel
Santa Guzmán, Luis Fernando
dc.subject.armarc.none.fl_str_mv Métodos estadísticos
Teoría bayesiana de decisiones estadísticas
Virus del dengue
Dengue - Modelos matemáticos
Enfermedades transmitidas por vectores - Estudio de casos
topic Métodos estadísticos
Teoría bayesiana de decisiones estadísticas
Virus del dengue
Dengue - Modelos matemáticos
Enfermedades transmitidas por vectores - Estudio de casos
Atlántico
Colombia
Dengue
Epidemiología
Estadística espacial
Modelo bayesiano
dc.subject.proposal.spa.fl_str_mv Atlántico
Colombia
Dengue
Epidemiología
Estadística espacial
Modelo bayesiano
description 1 recurso en línea (páginas 85-104).
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-12-19
dc.date.accessioned.none.fl_str_mv 2018-09-14T16:16:08Z
dc.date.available.none.fl_str_mv 2018-09-14T16:16:08Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Montoya González, A. A., Ortiz Beltrán, F. G. & Santa Guzmán, L.F. (2017). Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013. Perspectiva Geográfica, 22(2),85-104 DOI: 10.19053/01233769.7603. http://repositorio.uptc.edu.co/handle/001/2203
dc.identifier.issn.none.fl_str_mv 2500-8684
dc.identifier.uri.none.fl_str_mv http://repositorio.uptc.edu.co/handle/001/2203
dc.identifier.doi.none.fl_str_mv 10.19053/01233769.7603
identifier_str_mv Montoya González, A. A., Ortiz Beltrán, F. G. & Santa Guzmán, L.F. (2017). Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013. Perspectiva Geográfica, 22(2),85-104 DOI: 10.19053/01233769.7603. http://repositorio.uptc.edu.co/handle/001/2203
2500-8684
10.19053/01233769.7603
url http://repositorio.uptc.edu.co/handle/001/2203
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aburas, H. M., Cetiner, B. G. y Sari, M. (2010). Dengue confirmed-cases prediction: A neural network model. Expert Systems with Applications, 37(6), 4256-4260. Recuperado de http://doi.org/10.1016/j.eswa.2009.11.077
Alto Comisionado de las Naciones Unidas para los Refugiados (ACNUR). (s. f.). Diagnóstico departamental Atlántico. Recuperado de http://www.acnur.org/t3/ uploads/media/COI_2163.pdf?view=1
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., … Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. Recuperado de http://doi.org/10.1038/nature12060
Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., … Hay, S. I. (2012). Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Neglected Tropical Diseases, 6(8), e1760. Recuperado de http://doi.org/10.1371/journal.pntd.0001760
Cadena, M., Guzmán, D. y Ruíz, J. F. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de análisis de componentes principales (ACP). Grupo de modelamiento de tiempo, clima, y escenarios de cambio climático. Subdirección de meteorología–IDEAM. Recuperado de http://www.ideam.gov.co/documents/
Departamento Administrativo Nacional de Estadística (DANE). (2005). Recuperado de http://www.dane.gov.co/index.php/poblacion-y-demografia/proyecciones-depoblacion
Del Valle, J. A. (2016). Introducción a las Cadenas o Procesos de Markov. Recuperado de http://www.ingenieria.unam.mx/javica1/ingsistemas2/Simulacion/Cadenas_de_ Markov.htm
Dom, N. C., Hassan, A. A., Latif, Z. A. & Ismail, R. (2013). Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia. Asian Pacific Journal of Tropical Disease, 3(5), 352-361. Recuperado de http://doi.org/10.1016/S2222-1808(13)60084-5
Echavarria, A. y Quintero, O. L. (2012). Estudio de los factores climaticos y geográficos que influyen en la presencia de casos de dengue y criaderos de Aedes aegypti en el municipio de Bello. Recuperado de http://repository.eafit.edu.co:80/ handle/10784/4614
Espinosa, R. (1998). La problemática de los desplazados en el Atlántico. Recuperado de http://www.eltiempo.com/archivo/documento/MAM-824868
Feres, J. C. y Mancero, X. (2001). El método de las necesidades básicas insatisfechas (NBI) y sus aplicaciones en América Latina. CEPAL. Recuperado de http://dds.cepal.org/ infancia/guide-to-estimating-child-poverty/bibliografia/capitulo-III/Feres%20 Juan%20Carlos%20y%20Xavier%20Mancero%20%282001b%29%20El%20 metodo%20de%20las%20necesidades%20basicas%20insatisfechas%20 %28NBI%29%20y%20sus%20aplicaciones%20en%20America%20Latina.pdf
Gobernación de Atlántico. Secretaría de planeación Atlántico (2010). Anuario estadístico del Atlántico 2010. Recuperado de http://atlantico.gov.co
González, R., Infante, S. y Hernández, A. (2012). Modelos jerárquicos espacio temporales para mapear riesgos relativos de dengue, en el Municipio Girardot, Estado Aragua, Venezuela. Boletín de Malariología y Salud Ambiental, 52(1), 33-45. Recuperado de http://www.scielo.org.ve/scielo.php?script=sci_ arttext&pid=S1690-46482012000100004&lng=es&nrm=iso&tlng=es
Honorato, T., Lapa, P. P. de A., Sales, C. M. M., Reis-Santos, B., Tristão-Sá, R., Bertolde, A. I. y Maciel, E. L. N. (2014). Spatial analysis of distribution of dengue cases in Espírito Santo, Brazil, in 2010: use of Bayesian model. Revista Brasileira de Epidemiologia, 17, 150-159. Recuperado de http://doi.org/10.1590/1809- 4503201400060013
Instituto Nacional de Salud. (2013). Situación del dengue en Colombia, 2013. Recuperado de http://www.ins.gov.co/noticias/paginas/situaci%C3%B3n-deldengue- en-colombia-hasta-el-16-de-febrero-de-2013.aspx#.V2n3vVnKuU4
Lawson, A. (2008). Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Boca Raton: Chapman and Hall/CRC.
Mena, N., Troyo, A., Bonilla-Carrión, R. y Calderón-Arguedas, Ó. (2011). Factors associated with incidence of dengue in Costa Rica. Revista Panamericana de Salud Pública, 29(4), 234-242. http://doi.org/10.1590/S1020-49892011000400004
Ministerio de Educación Nacional. (2012) Región Caribe (Costa Atlántica) en Educación. Recuperado de http://www.mineducacion.gov.co/1621/ articles-283230_archivo_pdf_perfil.pdf
Monsalve, N. C., Rubio-Palis, Y. y Pérez, M. E. (2010). Modelaje bayesiano espaciotemporal de factores asociados con la incidencia del dengue en el área metropolitana de Maracay, Venezuela. Boletín de Malariología y Salud Ambiental, 50(2), 219-232. Recuperado de http://www.scielo.org.ve/scielo.php?script=sci_ arttext&pid=S1690-46482010000200006&lng=pt&nrm=iso&tlng=es
Mosquera, M., Obregón, R., Lloyd, L. S., Orozco, M. y Peña, A. (2010). Reflexiones sobre el alcance de la investigación formativa en comunicación en salud en los programas de prevención y control de dengue. El caso de Barranquilla (Colombia). Investigación y Desarrollo, 18(1), 186-217. Recuperado de https:// dialnet.unirioja.es/servlet/articulo?codigo=3685496
Murcia, C. E. y Sarmiento F. J. (2015). Modelos bayesianos para describir el comportamiento del cáncer gástrico en Colombia en el periodo 2005-2012 (tesis de pregrado). Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.
Organización Mundial de la Salud (OMS). (2012). Dengue. Recuperado de http://www. who.int/topics/dengue/es/
Padilla, J. C., Rojas, D. P. y Sáenz Gómez, R. (2012). Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia. Bogotá, Colombia: Guías de Impresión Ltda.
Pfeiffer, D., Robinson, T., Stevenson, M., Stevens, K., Rogers, D. y Clements, A. (2008) Spatial Analysis in Epidemiology. Oxford: University Press
Phung, D., Huang, C., Rutherford, S., Chu, C., Wang, X., Nguyen, M., … Manh, C. D. (2015). Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam. Acta Tropica, 141, Part A, 88-96. http://doi. org/10.1016/j.actatropica.2014.10.005
Santos, S. L. dos, Parra-Henao, G., Silva, M. B. C. & Augusto, L. G. da S. (2014). Dengue in Brazil and Colombia: a study of knowledge, attitudes, and practices. Revista Da Sociedade Brasileira de Medicina Tropical, 47(6), 783-787. http://doi. org/10.1590/0037-8682-0048-2014
Segebre, J. A. (2012). Plan de desarrollo 2012-2015. Gobernación de Atlántico- Atlántico más social. Recuperado de http://www.atlantico.gov.co/images/stories/ plan_desarrollo/plan_desarrollo_2012-2015.pdf
Silveira, G. P. y de Barros, L. C. (2015). Analysis of the dengue risk by means of a Takagi–Sugeno-style model. Fuzzy Sets and Systems, 277, 122-137. https://doi. org/10.1016/j.fss.2015.03.003
SIVIGILA. (2013). Vigilancia Rutinaria. Recuperado de http://www.ins.gov.co/lineas-deaccion/ Subdireccion-Vigilancia/sivigila/Paginas/vigilancia-rutinaria.aspx
Torres, C., Barguil, S., Melgarejo, M. y Olarte, A. (2014). Fuzzy model identification of dengue epidemic in Colombia based on multiresolution analysis. Artificial Intelligence in Medicine, 60(1), 41-51. Recuperado de http://doi.org/10.1016/j. artmed.2013.11.008
Waller, L. A. y Gotway, C. A. (2004). Applied spatial statistics for public health data. Hoboken, N.J: John Wiley & Sons.
Wongkoon, S., Jaroensutasinee, M. y Jaroensutasinee, K. (2012). Development of temporal modeling for prediction of dengue infection in Northeastern Thailand. Asian Pacific Journal of Tropical Medicine, 5(3), 249-252. http://doi.org/10.1016/ S1995-7645(12)60034-0
dc.relation.ispartofjournal.spa.fl_str_mv Perspectiva Geográfica;Volumen 22, número 2 (Julio-Diciembre 2017)
dc.rights.spa.fl_str_mv Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.spa.fl_str_mv https://revistas.uptc.edu.co/index.php/perspectiva/article/view/7603/5848
institution Universidad Pedagógica y Tecnológica de Colombia
bitstream.url.fl_str_mv https://repositorio.uptc.edu.co/bitstreams/77cf30c0-8b81-4f83-b88f-edf5c7c611e1/download
https://repositorio.uptc.edu.co/bitstreams/62426888-df87-4074-a432-153dda52d744/download
https://repositorio.uptc.edu.co/bitstreams/27f8ab7d-c796-46ea-bcd8-d4f1c38af317/download
https://repositorio.uptc.edu.co/bitstreams/ab536238-46c5-43e4-9a3d-c2676fb590fd/download
https://repositorio.uptc.edu.co/bitstreams/d901ddfa-2555-4f3e-a301-faf6569ab25b/download
https://repositorio.uptc.edu.co/bitstreams/adbe02e0-c750-4f0e-a7bf-c2114ae482ad/download
bitstream.checksum.fl_str_mv 782e905faea9be0b5b4bf3f4f70c699e
88794144ff048353b359a3174871b0d5
22c1e0a40ff25e0e95ed29235d04f7fb
22c1e0a40ff25e0e95ed29235d04f7fb
464852988dc835d003dcd06fda481e21
464852988dc835d003dcd06fda481e21
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv UPTC DSpace
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1814076225539276800
spelling Montoya González, Angie AndreaOrtiz Beltrán, Fabián GabrielSanta Guzmán, Luis Fernando2018-09-14T16:16:08Z2018-09-14T16:16:08Z2017-12-19Montoya González, A. A., Ortiz Beltrán, F. G. & Santa Guzmán, L.F. (2017). Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013. Perspectiva Geográfica, 22(2),85-104 DOI: 10.19053/01233769.7603. http://repositorio.uptc.edu.co/handle/001/22032500-8684http://repositorio.uptc.edu.co/handle/001/220310.19053/01233769.76031 recurso en línea (páginas 85-104).This papers aims to study the relationship between dengue cases and the variables given by the social, geographic and economic data of the 23 municipalities of the department of Atlantico, Colombia, through the use of completely. It was possible to analyze 7.786 cases of dengue presented in the four years of study, finding that the municipalities most affected by amount of population were Tubará, Candelaria, Puerto Colombia, Baranoa, Polonuevo and Ponedera. The best model was chosen for each year of study, based on the Deviation Information Criterion (DIC), it was found that the variables related to the social characteristics present in the dwellings and the disordered growth of the urban center were those that had the greatest influence In the increase of the number of dengue cases. The Bayesian model allowed the identification of the relationship of dengue with factors outside the health sector, establishing areas of higher risk of disease.O objetivo deste artigo é estudar a relação entre casos de dengue e as variáveis dadas pelos dados sociais, geográficos y econômicos dos 23 municípios do departamento de Atlántico, Colômbia, usando modelos espaciais completamente bayesianos para o período 2010 a 2013. Analisaram-se 7786 casos de dengue apresentados nos quatro anos de estudo, que constatou que os municípios mais afetados pelo tamanho da população foram Tubará, Candelaria, Puerto Colombia, Baranoa, Polonuevo e Ponedera. Se escolho o melhor modelo para cada ano de estudo, baseado no critério de Informação de Desvio (DIC), verificou-se que as variáveis relacionadas com características sociais presentes na habitação e o crescimento desordenado do casco urbano foram a maior influência no aumento do número de casos de dengue. O modelo bayesiano permitiu identificar a relação do dengue com fatores externos ao setor saúde, estabelecendo áreas de maior risco de doença.El propósito en este artículo es estudiar la relación entre los casos de dengue y las variables dadas por los datos sociales, geográficos y económicos de los 23 municipios del departamento del Atlántico, Colombia, mediante el uso de modelos espaciales completamente bayesianos para el período 2010 a 2013. Se analizaron 7786 casos de dengue presentados en los cuatro años de estudio, en los que se encontró que los municipios más afectados por cantidad de población fueron Tubará, Candelaria, Puerto Colombia, Baranoa, Polonuevo y Ponedera. Se escogió el mejor modelo por cada año de estudio, basados en el Criterio de Información de Desviación (DIC), se encontró que las variables afines a las características sociales presentes en las viviendas y el crecimiento desordenado del casco urbano fueron las que mayor influencia tuvieron en el aumento del número de casos de dengue. El modelo bayesiano permitió identificar la relación del dengue con factores fuera del sector de salud estableciendo áreas de mayor riesgo de enfermedad.Bibliografía y webgrafía: páginas 102-104.application/pdfspaUniversidad Pedagógica y Tecnológica de ColombiaCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiahttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.uptc.edu.co/index.php/perspectiva/article/view/7603/5848Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013Bayesian model for the study of dengue disease in the department of Atlántico Colombia years 2010 to 2013Modelo bayesiano para o estudo da doença do dengue no departamento de Atlántico, Colômbia, anos 2010 a 2013Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Aburas, H. M., Cetiner, B. G. y Sari, M. (2010). Dengue confirmed-cases prediction: A neural network model. Expert Systems with Applications, 37(6), 4256-4260. Recuperado de http://doi.org/10.1016/j.eswa.2009.11.077Alto Comisionado de las Naciones Unidas para los Refugiados (ACNUR). (s. f.). Diagnóstico departamental Atlántico. Recuperado de http://www.acnur.org/t3/ uploads/media/COI_2163.pdf?view=1Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., … Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. Recuperado de http://doi.org/10.1038/nature12060Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., … Hay, S. I. (2012). Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Neglected Tropical Diseases, 6(8), e1760. Recuperado de http://doi.org/10.1371/journal.pntd.0001760Cadena, M., Guzmán, D. y Ruíz, J. F. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de análisis de componentes principales (ACP). Grupo de modelamiento de tiempo, clima, y escenarios de cambio climático. Subdirección de meteorología–IDEAM. Recuperado de http://www.ideam.gov.co/documents/Departamento Administrativo Nacional de Estadística (DANE). (2005). Recuperado de http://www.dane.gov.co/index.php/poblacion-y-demografia/proyecciones-depoblacionDel Valle, J. A. (2016). Introducción a las Cadenas o Procesos de Markov. Recuperado de http://www.ingenieria.unam.mx/javica1/ingsistemas2/Simulacion/Cadenas_de_ Markov.htmDom, N. C., Hassan, A. A., Latif, Z. A. & Ismail, R. (2013). Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia. Asian Pacific Journal of Tropical Disease, 3(5), 352-361. Recuperado de http://doi.org/10.1016/S2222-1808(13)60084-5Echavarria, A. y Quintero, O. L. (2012). Estudio de los factores climaticos y geográficos que influyen en la presencia de casos de dengue y criaderos de Aedes aegypti en el municipio de Bello. Recuperado de http://repository.eafit.edu.co:80/ handle/10784/4614Espinosa, R. (1998). La problemática de los desplazados en el Atlántico. Recuperado de http://www.eltiempo.com/archivo/documento/MAM-824868Feres, J. C. y Mancero, X. (2001). El método de las necesidades básicas insatisfechas (NBI) y sus aplicaciones en América Latina. CEPAL. Recuperado de http://dds.cepal.org/ infancia/guide-to-estimating-child-poverty/bibliografia/capitulo-III/Feres%20 Juan%20Carlos%20y%20Xavier%20Mancero%20%282001b%29%20El%20 metodo%20de%20las%20necesidades%20basicas%20insatisfechas%20 %28NBI%29%20y%20sus%20aplicaciones%20en%20America%20Latina.pdfGobernación de Atlántico. Secretaría de planeación Atlántico (2010). Anuario estadístico del Atlántico 2010. Recuperado de http://atlantico.gov.coGonzález, R., Infante, S. y Hernández, A. (2012). Modelos jerárquicos espacio temporales para mapear riesgos relativos de dengue, en el Municipio Girardot, Estado Aragua, Venezuela. Boletín de Malariología y Salud Ambiental, 52(1), 33-45. Recuperado de http://www.scielo.org.ve/scielo.php?script=sci_ arttext&pid=S1690-46482012000100004&lng=es&nrm=iso&tlng=esHonorato, T., Lapa, P. P. de A., Sales, C. M. M., Reis-Santos, B., Tristão-Sá, R., Bertolde, A. I. y Maciel, E. L. N. (2014). Spatial analysis of distribution of dengue cases in Espírito Santo, Brazil, in 2010: use of Bayesian model. Revista Brasileira de Epidemiologia, 17, 150-159. Recuperado de http://doi.org/10.1590/1809- 4503201400060013Instituto Nacional de Salud. (2013). Situación del dengue en Colombia, 2013. Recuperado de http://www.ins.gov.co/noticias/paginas/situaci%C3%B3n-deldengue- en-colombia-hasta-el-16-de-febrero-de-2013.aspx#.V2n3vVnKuU4Lawson, A. (2008). Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Boca Raton: Chapman and Hall/CRC.Mena, N., Troyo, A., Bonilla-Carrión, R. y Calderón-Arguedas, Ó. (2011). Factors associated with incidence of dengue in Costa Rica. Revista Panamericana de Salud Pública, 29(4), 234-242. http://doi.org/10.1590/S1020-49892011000400004Ministerio de Educación Nacional. (2012) Región Caribe (Costa Atlántica) en Educación. Recuperado de http://www.mineducacion.gov.co/1621/ articles-283230_archivo_pdf_perfil.pdfMonsalve, N. C., Rubio-Palis, Y. y Pérez, M. E. (2010). Modelaje bayesiano espaciotemporal de factores asociados con la incidencia del dengue en el área metropolitana de Maracay, Venezuela. Boletín de Malariología y Salud Ambiental, 50(2), 219-232. Recuperado de http://www.scielo.org.ve/scielo.php?script=sci_ arttext&pid=S1690-46482010000200006&lng=pt&nrm=iso&tlng=esMosquera, M., Obregón, R., Lloyd, L. S., Orozco, M. y Peña, A. (2010). Reflexiones sobre el alcance de la investigación formativa en comunicación en salud en los programas de prevención y control de dengue. El caso de Barranquilla (Colombia). Investigación y Desarrollo, 18(1), 186-217. Recuperado de https:// dialnet.unirioja.es/servlet/articulo?codigo=3685496Murcia, C. E. y Sarmiento F. J. (2015). Modelos bayesianos para describir el comportamiento del cáncer gástrico en Colombia en el periodo 2005-2012 (tesis de pregrado). Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.Organización Mundial de la Salud (OMS). (2012). Dengue. Recuperado de http://www. who.int/topics/dengue/es/Padilla, J. C., Rojas, D. P. y Sáenz Gómez, R. (2012). Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia. Bogotá, Colombia: Guías de Impresión Ltda.Pfeiffer, D., Robinson, T., Stevenson, M., Stevens, K., Rogers, D. y Clements, A. (2008) Spatial Analysis in Epidemiology. Oxford: University PressPhung, D., Huang, C., Rutherford, S., Chu, C., Wang, X., Nguyen, M., … Manh, C. D. (2015). Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam. Acta Tropica, 141, Part A, 88-96. http://doi. org/10.1016/j.actatropica.2014.10.005Santos, S. L. dos, Parra-Henao, G., Silva, M. B. C. & Augusto, L. G. da S. (2014). Dengue in Brazil and Colombia: a study of knowledge, attitudes, and practices. Revista Da Sociedade Brasileira de Medicina Tropical, 47(6), 783-787. http://doi. org/10.1590/0037-8682-0048-2014Segebre, J. A. (2012). Plan de desarrollo 2012-2015. Gobernación de Atlántico- Atlántico más social. Recuperado de http://www.atlantico.gov.co/images/stories/ plan_desarrollo/plan_desarrollo_2012-2015.pdfSilveira, G. P. y de Barros, L. C. (2015). Analysis of the dengue risk by means of a Takagi–Sugeno-style model. Fuzzy Sets and Systems, 277, 122-137. https://doi. org/10.1016/j.fss.2015.03.003SIVIGILA. (2013). Vigilancia Rutinaria. Recuperado de http://www.ins.gov.co/lineas-deaccion/ Subdireccion-Vigilancia/sivigila/Paginas/vigilancia-rutinaria.aspxTorres, C., Barguil, S., Melgarejo, M. y Olarte, A. (2014). Fuzzy model identification of dengue epidemic in Colombia based on multiresolution analysis. Artificial Intelligence in Medicine, 60(1), 41-51. Recuperado de http://doi.org/10.1016/j. artmed.2013.11.008Waller, L. A. y Gotway, C. A. (2004). Applied spatial statistics for public health data. Hoboken, N.J: John Wiley & Sons.Wongkoon, S., Jaroensutasinee, M. y Jaroensutasinee, K. (2012). Development of temporal modeling for prediction of dengue infection in Northeastern Thailand. Asian Pacific Journal of Tropical Medicine, 5(3), 249-252. http://doi.org/10.1016/ S1995-7645(12)60034-0Perspectiva Geográfica;Volumen 22, número 2 (Julio-Diciembre 2017)Métodos estadísticosTeoría bayesiana de decisiones estadísticasVirus del dengueDengue - Modelos matemáticosEnfermedades transmitidas por vectores - Estudio de casosAtlánticoColombiaDengueEpidemiologíaEstadística espacialModelo bayesianoORIGINALPPS_917_Modelo_bayesiano_para_estudio.pdfPPS_917_Modelo_bayesiano_para_estudio.pdfArchivo principalapplication/pdf3129540https://repositorio.uptc.edu.co/bitstreams/77cf30c0-8b81-4f83-b88f-edf5c7c611e1/download782e905faea9be0b5b4bf3f4f70c699eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814798https://repositorio.uptc.edu.co/bitstreams/62426888-df87-4074-a432-153dda52d744/download88794144ff048353b359a3174871b0d5MD52TEXTPPS-917.pdf.txtPPS-917.pdf.txtExtracted texttext/plain54026https://repositorio.uptc.edu.co/bitstreams/27f8ab7d-c796-46ea-bcd8-d4f1c38af317/download22c1e0a40ff25e0e95ed29235d04f7fbMD53PPS_917_Modelo_bayesiano_para_estudio.pdf.txtPPS_917_Modelo_bayesiano_para_estudio.pdf.txtExtracted texttext/plain54026https://repositorio.uptc.edu.co/bitstreams/ab536238-46c5-43e4-9a3d-c2676fb590fd/download22c1e0a40ff25e0e95ed29235d04f7fbMD55THUMBNAILPPS-917.pdf.jpgPPS-917.pdf.jpgGenerated Thumbnailimage/jpeg4401https://repositorio.uptc.edu.co/bitstreams/d901ddfa-2555-4f3e-a301-faf6569ab25b/download464852988dc835d003dcd06fda481e21MD54PPS_917_Modelo_bayesiano_para_estudio.pdf.jpgPPS_917_Modelo_bayesiano_para_estudio.pdf.jpgGenerated Thumbnailimage/jpeg4401https://repositorio.uptc.edu.co/bitstreams/adbe02e0-c750-4f0e-a7bf-c2114ae482ad/download464852988dc835d003dcd06fda481e21MD56001/2203oai:repositorio.uptc.edu.co:001/22032021-06-25 16:34:36.244https://creativecommons.org/licenses/by-nc/4.0/Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaopen.accesshttps://repositorio.uptc.edu.coUPTC DSpacerepositorio.uptc@uptc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KMS4gRGVmaW5pY2lvbmVzCmEuCU9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLglMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLglBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuCVVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoyLiBEZXJlY2hvcyBkZSBVc29zIEhvbnJhZG9zIHkgZXhjZXBjaW9uZXMgTGVnYWxlcy4KTmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CmEuCVJlcHJvZHVjaXIgbGEgT2JyYSwgaW5jb3Jwb3JhciBsYSBPYnJhIGVuIHVuYSBvIG3DoXMgT2JyYXMgQ29sZWN0aXZhcywgeSByZXByb2R1Y2lyIGxhIE9icmEgaW5jb3Jwb3JhZGEgZW4gbGFzIE9icmFzIENvbGVjdGl2YXM7CmIuCURpc3RyaWJ1aXIgY29waWFzIG8gZm9ub2dyYW1hcyBkZSBsYXMgT2JyYXMsIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EsIGluY2x1ecOpbmRvbGFzIGNvbW8gaW5jb3Jwb3JhZGFzIGVuIE9icmFzIENvbGVjdGl2YXMsIHNlZ8O6biBjb3JyZXNwb25kYTsKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCjQuIFJlc3RyaWNjaW9uZXMuCkxhIGxpY2VuY2lhIG90b3JnYWRhIGVuIGxhIGFudGVyaW9yIFNlY2Npw7NuIDMgZXN0w6EgZXhwcmVzYW1lbnRlIHN1amV0YSB5IGxpbWl0YWRhIHBvciBsYXMgc2lndWllbnRlcyByZXN0cmljY2lvbmVzOgphLglVc3RlZCBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBzw7NsbyBiYWpvIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCB5IFVzdGVkIGRlYmUgaW5jbHVpciB1bmEgY29waWEgZGUgZXN0YSBsaWNlbmNpYSBvIGRlbCBJZGVudGlmaWNhZG9yIFVuaXZlcnNhbCBkZSBSZWN1cnNvcyBkZSBsYSBtaXNtYSBjb24gY2FkYSBjb3BpYSBkZSBsYSBPYnJhIHF1ZSBkaXN0cmlidXlhLCBleGhpYmEgcMO6YmxpY2FtZW50ZSwgZWplY3V0ZSBww7pibGljYW1lbnRlIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuIE5vIGVzIHBvc2libGUgb2ZyZWNlciBvIGltcG9uZXIgbmluZ3VuYSBjb25kaWNpw7NuIHNvYnJlIGxhIE9icmEgcXVlIGFsdGVyZSBvIGxpbWl0ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSBvIGVsIGVqZXJjaWNpbyBkZSBsb3MgZGVyZWNob3MgZGUgbG9zIGRlc3RpbmF0YXJpb3Mgb3RvcmdhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBObyBlcyBwb3NpYmxlIHN1YmxpY2VuY2lhciBsYSBPYnJhLiBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdG9zIHRvZG9zIGxvcyBhdmlzb3MgcXVlIGhhZ2FuIHJlZmVyZW5jaWEgYSBlc3RhIExpY2VuY2lhIHkgYSBsYSBjbMOhdXN1bGEgZGUgbGltaXRhY2nDs24gZGUgZ2FyYW50w61hcy4gVXN0ZWQgbm8gcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgY29uIGFsZ3VuYSBtZWRpZGEgdGVjbm9sw7NnaWNhIHF1ZSBjb250cm9sZSBlbCBhY2Nlc28gbyBsYSB1dGlsaXphY2nDs24gZGUgZWxsYSBkZSB1bmEgZm9ybWEgcXVlIHNlYSBpbmNvbnNpc3RlbnRlIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gTG8gYW50ZXJpb3Igc2UgYXBsaWNhIGEgbGEgT2JyYSBpbmNvcnBvcmFkYSBhIHVuYSBPYnJhIENvbGVjdGl2YSwgcGVybyBlc3RvIG5vIGV4aWdlIHF1ZSBsYSBPYnJhIENvbGVjdGl2YSBhcGFydGUgZGUgbGEgb2JyYSBtaXNtYSBxdWVkZSBzdWpldGEgYSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gU2kgVXN0ZWQgY3JlYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHByZXZpbyBhdmlzbyBkZSBjdWFscXVpZXIgTGljZW5jaWFudGUgZGViZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHBvc2libGUsIGVsaW1pbmFyIGRlIGxhIE9icmEgQ29sZWN0aXZhIGN1YWxxdWllciByZWZlcmVuY2lhIGEgZGljaG8gTGljZW5jaWFudGUgbyBhbCBBdXRvciBPcmlnaW5hbCwgc2Vnw7puIGxvIHNvbGljaXRhZG8gcG9yIGVsIExpY2VuY2lhbnRlIHkgY29uZm9ybWUgbG8gZXhpZ2UgbGEgY2zDoXVzdWxhIDQoYykuCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KYy4JU2kgdXN0ZWQgZGlzdHJpYnV5ZSwgZXhoaWJlIHDDumJsaWNhbWVudGUsIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBvIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBlbiBmb3JtYSBkaWdpdGFsIGxhIE9icmEgbyBjdWFscXVpZXIgT2JyYSBEZXJpdmFkYSB1IE9icmEgQ29sZWN0aXZhLCBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdGEgdG9kYSBsYSBpbmZvcm1hY2nDs24gZGUgZGVyZWNobyBkZSBhdXRvciBkZSBsYSBPYnJhIHkgcHJvcG9yY2lvbmFyLCBkZSBmb3JtYSByYXpvbmFibGUgc2Vnw7puIGVsIG1lZGlvIG8gbWFuZXJhIHF1ZSBVc3RlZCBlc3TDqSB1dGlsaXphbmRvOiAoaSkgZWwgbm9tYnJlIGRlbCBBdXRvciBPcmlnaW5hbCBzaSBlc3TDoSBwcm92aXN0byAobyBzZXVkw7NuaW1vLCBzaSBmdWVyZSBhcGxpY2FibGUpLCB5L28gKGlpKSBlbCBub21icmUgZGUgbGEgcGFydGUgbyBsYXMgcGFydGVzIHF1ZSBlbCBBdXRvciBPcmlnaW5hbCB5L28gZWwgTGljZW5jaWFudGUgaHViaWVyZW4gZGVzaWduYWRvIHBhcmEgbGEgYXRyaWJ1Y2nDs24gKHYuZy4sIHVuIGluc3RpdHV0byBwYXRyb2NpbmFkb3IsIGVkaXRvcmlhbCwgcHVibGljYWNpw7NuKSBlbiBsYSBpbmZvcm1hY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlbCBMaWNlbmNpYW50ZSwgdMOpcm1pbm9zIGRlIHNlcnZpY2lvcyBvIGRlIG90cmFzIGZvcm1hcyByYXpvbmFibGVzOyBlbCB0w610dWxvIGRlIGxhIE9icmEgc2kgZXN0w6EgcHJvdmlzdG87IGVuIGxhIG1lZGlkYSBkZSBsbyByYXpvbmFibGVtZW50ZSBmYWN0aWJsZSB5LCBzaSBlc3TDoSBwcm92aXN0bywgZWwgSWRlbnRpZmljYWRvciBVbmlmb3JtZSBkZSBSZWN1cnNvcyAoVW5pZm9ybSBSZXNvdXJjZSBJZGVudGlmaWVyKSBxdWUgZWwgTGljZW5jaWFudGUgZXNwZWNpZmljYSBwYXJhIHNlciBhc29jaWFkbyBjb24gbGEgT2JyYSwgc2Fsdm8gcXVlIHRhbCBVUkkgbm8gc2UgcmVmaWVyYSBhIGxhIG5vdGEgc29icmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIG8gYSBsYSBpbmZvcm1hY2nDs24gc29icmUgZWwgbGljZW5jaWFtaWVudG8gZGUgbGEgT2JyYTsgeSBlbiBlbCBjYXNvIGRlIHVuYSBPYnJhIERlcml2YWRhLCBhdHJpYnVpciBlbCBjcsOpZGl0byBpZGVudGlmaWNhbmRvIGVsIHVzbyBkZSBsYSBPYnJhIGVuIGxhIE9icmEgRGVyaXZhZGEgKHYuZy4sICJUcmFkdWNjacOzbiBGcmFuY2VzYSBkZSBsYSBPYnJhIGRlbCBBdXRvciBPcmlnaW5hbCwiIG8gIkd1acOzbiBDaW5lbWF0b2dyw6FmaWNvIGJhc2FkbyBlbiBsYSBPYnJhIG9yaWdpbmFsIGRlbCBBdXRvciBPcmlnaW5hbCIpLiBUYWwgY3LDqWRpdG8gcHVlZGUgc2VyIGltcGxlbWVudGFkbyBkZSBjdWFscXVpZXIgZm9ybWEgcmF6b25hYmxlOyBlbiBlbCBjYXNvLCBzaW4gZW1iYXJnbywgZGUgT2JyYXMgRGVyaXZhZGFzIHUgT2JyYXMgQ29sZWN0aXZhcywgdGFsIGNyw6lkaXRvIGFwYXJlY2Vyw6EsIGNvbW8gbcOtbmltbywgZG9uZGUgYXBhcmVjZSBlbCBjcsOpZGl0byBkZSBjdWFscXVpZXIgb3RybyBhdXRvciBjb21wYXJhYmxlIHkgZGUgdW5hIG1hbmVyYSwgYWwgbWVub3MsIHRhbiBkZXN0YWNhZGEgY29tbyBlbCBjcsOpZGl0byBkZSBvdHJvIGF1dG9yIGNvbXBhcmFibGUuCmQuCVBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgppaS4JUmVnYWzDrWFzIHBvciBGb25vZ3JhbWFzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIGxvcyBjb25zYWdyYWRvcyBwb3IgbGEgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KZS4JR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KNi4gTGltaXRhY2nDs24gZGUgcmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo3LiBUw6lybWluby4KYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuCVN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgo4LiBWYXJpb3MuCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuCVNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLglOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=