Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students

In this paper, predictive data mining techniques are applied to determine the academic performance from fifth grade students in the Saber 5° tests Language skill at Colombian elementary schools in 2017. We employed the CRISP-DM methodology.  Socioeconomic, academic, and institutional information was...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14350
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14814
https://repositorio.uptc.edu.co/handle/001/14350
Palabra clave:
Data Mining
Classification
Decision Trees
Predictive Model
Performance Patterns
Saber 5 Tests
Minería de Datos
Clasificación
Árboles de Decisión
Modelo Predictivo
Patrones de Desempeño
Pruebas Saber 5
Rights
License
Copyright (c) 2022 Ricardo Timarán-Pereira, Javier Caicedo-Zambrano, Andrea Timarán-Buchely
id REPOUPTC2_14c066efa46e8354ff81edf8eb0a0e33
oai_identifier_str oai:repositorio.uptc.edu.co:001/14350
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2022-12-312024-07-05T19:12:08Z2024-07-05T19:12:08Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1481410.19053/01211129.v31.n62.2022.14814https://repositorio.uptc.edu.co/handle/001/14350In this paper, predictive data mining techniques are applied to determine the academic performance from fifth grade students in the Saber 5° tests Language skill at Colombian elementary schools in 2017. We employed the CRISP-DM methodology.  Socioeconomic, academic, and institutional information was available at the ICFES databases. A minable dataset was obtained using data cleaning and transformation techniques. A decision tree was built with the Weka tool J48 algorithm. Some of the predictors of the discovered patterns are the nature and location of the school, whether or not students failed a school year, the age group, the mother's educational attainment, and the rates of ICTs and household appliances. The findings of this research serve as quality information for the decision-making at the Ministry of National Education (MEN) and the secretaries of education, and for the directors of elementary educational institutions to define improvement plans that result in the quality of elementary school education in Colombia.En este artículo se aplican técnicas predictivas de minería de datos para descubrir patrones de desempeño académico en la competencia de Lenguaje de las pruebas Saber 5° que presentaron los estudiantes de las instituciones educativas colombianas de básica primaria en el año 2017. Para tal fin, se utilizó la metodología CRISP-DM y se tuvo en cuenta la información socioeconómica, académica e institucional de las bases de datos del ICFES. Se obtuvo un conjunto de datos minable utilizando técnicas de limpieza y transformación de datos y se construyó un árbol de decisión con el algoritmo J48 de la herramienta Weka. Entre los factores predictores de los patrones descubiertos están la naturaleza y la ubicación del colegio, si los estudiantes reprobaron o no algún grado, el grupo etario, la educación de la madre y los índices de TICs y electrodomésticos en los hogares. El conocimiento producido en esta investigación es información de calidad para la toma de decisiones en el MEN y las secretarías de educación y para que las directivas de las instituciones educativas de básica primaria definan planes de mejoramiento que redunden en la calidad de la educación en Colombia.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/14814/12535https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14814/12575Copyright (c) 2022 Ricardo Timarán-Pereira, Javier Caicedo-Zambrano, Andrea Timarán-Buchelyhttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf72http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e14814Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e148142357-53280121-1129Data MiningClassificationDecision TreesPredictive ModelPerformance PatternsSaber 5 TestsMinería de DatosClasificaciónÁrboles de DecisiónModelo PredictivoPatrones de DesempeñoPruebas Saber 5Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School StudentsMinería predictiva aplicada al descubrimiento de factores asociados al desempeño en la competencia de lenguaje de los estudiantes de básica primariainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a155http://purl.org/coar/version/c_970fb48d4fbd8a85Timarán-Pereira, RicardoCaicedo-Zambrano, Segundo Javier Timarán-Buchely, Andrea001/14350oai:repositorio.uptc.edu.co:001/143502025-07-18 11:53:14.446metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
dc.title.es-ES.fl_str_mv Minería predictiva aplicada al descubrimiento de factores asociados al desempeño en la competencia de lenguaje de los estudiantes de básica primaria
title Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
spellingShingle Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
Data Mining
Classification
Decision Trees
Predictive Model
Performance Patterns
Saber 5 Tests
Minería de Datos
Clasificación
Árboles de Decisión
Modelo Predictivo
Patrones de Desempeño
Pruebas Saber 5
title_short Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
title_full Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
title_fullStr Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
title_full_unstemmed Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
title_sort Applying Predictive Data Mining to Discover Factors Associated to the Language Skill Performance from Elementary School Students
dc.subject.en-US.fl_str_mv Data Mining
Classification
Decision Trees
Predictive Model
Performance Patterns
Saber 5 Tests
topic Data Mining
Classification
Decision Trees
Predictive Model
Performance Patterns
Saber 5 Tests
Minería de Datos
Clasificación
Árboles de Decisión
Modelo Predictivo
Patrones de Desempeño
Pruebas Saber 5
dc.subject.es-ES.fl_str_mv Minería de Datos
Clasificación
Árboles de Decisión
Modelo Predictivo
Patrones de Desempeño
Pruebas Saber 5
description In this paper, predictive data mining techniques are applied to determine the academic performance from fifth grade students in the Saber 5° tests Language skill at Colombian elementary schools in 2017. We employed the CRISP-DM methodology.  Socioeconomic, academic, and institutional information was available at the ICFES databases. A minable dataset was obtained using data cleaning and transformation techniques. A decision tree was built with the Weka tool J48 algorithm. Some of the predictors of the discovered patterns are the nature and location of the school, whether or not students failed a school year, the age group, the mother's educational attainment, and the rates of ICTs and household appliances. The findings of this research serve as quality information for the decision-making at the Ministry of National Education (MEN) and the secretaries of education, and for the directors of elementary educational institutions to define improvement plans that result in the quality of elementary school education in Colombia.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:12:08Z
dc.date.available.none.fl_str_mv 2024-07-05T19:12:08Z
dc.date.none.fl_str_mv 2022-12-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a155
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14814
10.19053/01211129.v31.n62.2022.14814
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14350
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14814
https://repositorio.uptc.edu.co/handle/001/14350
identifier_str_mv 10.19053/01211129.v31.n62.2022.14814
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14814/12535
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/14814/12575
dc.rights.en-US.fl_str_mv Copyright (c) 2022 Ricardo Timarán-Pereira, Javier Caicedo-Zambrano, Andrea Timarán-Buchely
http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf72
rights_invalid_str_mv Copyright (c) 2022 Ricardo Timarán-Pereira, Javier Caicedo-Zambrano, Andrea Timarán-Buchely
http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf72
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 No. 62 (2022): October-December 2022 (Continuous Publication); e14814
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 31 Núm. 62 (2022): Octubre-Diciembre 2022 (Publicación Continua) ; e14814
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633797392367616