Dual silent communication system development based on subvocal speech and Raspberry Pi

This paper presents a novel methodology to develop a silent dual communication based on subvocal speech. Two electronic systems were developed for people’s wireless communication. The system has 3 main stages. The first stage is the subvocal speech electromyographic signals acquisition, in charge to...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14159
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5304
https://repositorio.uptc.edu.co/handle/001/14159
Palabra clave:
entropy
Raspberry Pi
silent communication
SVM (Support Vector Machines)
subvocal speech
Wavelet
comunicación silenciosa
entropía
habla subvocal
MSV (Máquinas de Soporte Vectorial)
Raspberry Pi
Wavelet
Rights
License
http://purl.org/coar/access_right/c_abf162
id REPOUPTC2_134a76489a664e43e570ae0241223a75
oai_identifier_str oai:repositorio.uptc.edu.co:001/14159
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Dual silent communication system development based on subvocal speech and Raspberry Pi
dc.title.es-ES.fl_str_mv Desarrollo de un sistema de comunicación silenciosa dual basado en habla subvocal y Raspberry Pi
title Dual silent communication system development based on subvocal speech and Raspberry Pi
spellingShingle Dual silent communication system development based on subvocal speech and Raspberry Pi
entropy
Raspberry Pi
silent communication
SVM (Support Vector Machines)
subvocal speech
Wavelet
comunicación silenciosa
entropía
habla subvocal
MSV (Máquinas de Soporte Vectorial)
Raspberry Pi
Wavelet
title_short Dual silent communication system development based on subvocal speech and Raspberry Pi
title_full Dual silent communication system development based on subvocal speech and Raspberry Pi
title_fullStr Dual silent communication system development based on subvocal speech and Raspberry Pi
title_full_unstemmed Dual silent communication system development based on subvocal speech and Raspberry Pi
title_sort Dual silent communication system development based on subvocal speech and Raspberry Pi
dc.subject.en-US.fl_str_mv entropy
Raspberry Pi
silent communication
SVM (Support Vector Machines)
subvocal speech
Wavelet
topic entropy
Raspberry Pi
silent communication
SVM (Support Vector Machines)
subvocal speech
Wavelet
comunicación silenciosa
entropía
habla subvocal
MSV (Máquinas de Soporte Vectorial)
Raspberry Pi
Wavelet
dc.subject.es-ES.fl_str_mv comunicación silenciosa
entropía
habla subvocal
MSV (Máquinas de Soporte Vectorial)
Raspberry Pi
Wavelet
description This paper presents a novel methodology to develop a silent dual communication based on subvocal speech. Two electronic systems were developed for people’s wireless communication. The system has 3 main stages. The first stage is the subvocal speech electromyographic signals acquisition, in charge to extract, condition, encode and transmit the system development. This signals were digitized and registered from the throat and sent to an embedded a raspberry pi.In this device was implemented the processing, as it is called the second stage, which besides to store, assumes conditioning, extraction and pattern classification of subvocal speech signals. Mathematical techniques were used as Entropy, Wavelet analysis, Minimal Squares and Vector Support Machines, which were applied in Python free environment program. Finally, in the last stage in charge to communicate by wireless means, were developed the two electronic systems, by using 4 signal types, to classify the words: Hello, intruder, hello how are you? and I am cold to perform the silent communication.Additionally, in this article we show the speech subvocal signals’ recording system realization. The average accuracy percentage was 72.5 %, and includes a total of 50 words by class, this is 200 signals. Finally, it demonstrated that using the Raspberry Pi it is possible to set a silent communication system, using subvocal. speech signals.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.none.fl_str_mv 2016-09-01
dc.type.en-US.fl_str_mv investigation
dc.type.es-ES.fl_str_mv investigación
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a245
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5304
10.19053/01211129.v25.n43.2016.5304
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14159
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5304
https://repositorio.uptc.edu.co/handle/001/14159
identifier_str_mv 10.19053/01211129.v25.n43.2016.5304
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5304/4431
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5304/5066
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf162
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf162
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 111-121
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 111-121
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633826514468864
spelling 2016-09-012024-07-05T19:11:30Z2024-07-05T19:11:30Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/530410.19053/01211129.v25.n43.2016.5304https://repositorio.uptc.edu.co/handle/001/14159This paper presents a novel methodology to develop a silent dual communication based on subvocal speech. Two electronic systems were developed for people’s wireless communication. The system has 3 main stages. The first stage is the subvocal speech electromyographic signals acquisition, in charge to extract, condition, encode and transmit the system development. This signals were digitized and registered from the throat and sent to an embedded a raspberry pi.In this device was implemented the processing, as it is called the second stage, which besides to store, assumes conditioning, extraction and pattern classification of subvocal speech signals. Mathematical techniques were used as Entropy, Wavelet analysis, Minimal Squares and Vector Support Machines, which were applied in Python free environment program. Finally, in the last stage in charge to communicate by wireless means, were developed the two electronic systems, by using 4 signal types, to classify the words: Hello, intruder, hello how are you? and I am cold to perform the silent communication.Additionally, in this article we show the speech subvocal signals’ recording system realization. The average accuracy percentage was 72.5 %, and includes a total of 50 words by class, this is 200 signals. Finally, it demonstrated that using the Raspberry Pi it is possible to set a silent communication system, using subvocal. speech signals.Presenta una metodología novedosa para establecer una comunicación silenciosa dual basada en habla subvocal, para ello se desarrollaron dos sistemas electrónicos que registran las señales bioeléctricas que llegan al aparato fonador, generadas al momento de realizar el proceso de lectura silenciosa por el individuo. Estos sistemas están basados en tres etapas fundamentales, la primera es la de adquisición, encargada de extraer, acondicionar, codificar y transmitir las señales electromiográficas del habla subvocal hacia la segunda etapa, denominada de procesamiento, en esta etapa, implementada en un sistema Raspberry Pi, se desarrollaron los procesos de almacenamiento, acondicionamiento, extracción de patrones y clasificación de palabras, utilizando técnicas matemáticas como: Entropía, análisis Wavelet y Máquinas de Soporte Vectorial de Mínimos Cuadrados, implementadas bajo el entorno libre de programación Python, finalmente, la última etapa del sistema se encargó de comunicar inalámbricamente los dos sistemas electrónicos, utilizando 4 clases de señales, para clasificar las palabras hola, intruso, ¿hola cómo estás? y tengo frío.Adicionalmente, en este artículo se muestra la implementación del sistema para el registro de señales de habla subvocal. El porcentaje de acierto promedio general es de 72.5 %. Se incluyen un total de 50 palabras por clase, es decir, 200 señales. Finalmente, se pudo demostrar que usando una Raspberry Pi es posible establecer un sistema de comunicación silenciosa a partir de las señales del habla subvocal.application/pdftext/htmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/5304/4431https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5304/5066Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 111-121Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 111-1212357-53280121-1129entropyRaspberry Pisilent communicationSVM (Support Vector Machines)subvocal speechWaveletcomunicación silenciosaentropíahabla subvocalMSV (Máquinas de Soporte Vectorial)Raspberry PiWaveletDual silent communication system development based on subvocal speech and Raspberry PiDesarrollo de un sistema de comunicación silenciosa dual basado en habla subvocal y Raspberry Piinvestigationinvestigacióninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a245http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf162http://purl.org/coar/access_right/c_abf2Ramírez-Corzo, José DanielMendoza, Luis Enrique001/14159oai:repositorio.uptc.edu.co:001/141592025-07-18 11:53:37.544metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co